\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

mk gọi k là p nha

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

5 tháng 1 2017

Đơn giản các số nguyên tố lớn hơn 3 có 3 dạng là 3k+1 và 3k+2

Có 3 số nguyên tố mà chỉ có 2 dạng nên tồn tại 2 số nguyên tố có cùng một dạng

Mà số nguyên tố lớn hơn 2 đều là số lẻ nên hiệu của nó sẽ là số chẵn

Vậy số đó chia hết cho 2

Mà 2 số có cùng một dạng trừ nhau sẽ chia hết cho 3

Vậy k vừa chia hết cho 2 và 3

mà (2;3) =1 nên k chia hết cho 6

21 tháng 1 2017

Bn tham khảo ở olm.vn/hoi-dap/question/143350.html

27 tháng 1 2023

ai hunt sea ko

2 tháng 5 2024

Lời giải của tớ dài lắm 

Tớ lười gõ bàn phím

2 tháng 5 2024

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

17 tháng 12 2015

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

25 tháng 7 2015

p là số nguyên tố > 3 => p lẻ 

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1 

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d =  3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

4 tháng 3 2019

Vì p,p+d,p+2d là số nguyên tố >3 nên p,p+d,p+2d ko chia hết cho 3

=>p,p+d,p+2d khi : cho 3 thì có số dư là 1 và 2

=>trong 3 số p,p+d,p+2d có ít nhất 2 số có cùng số dư( định lí Đi-rec-lê thì phải (mk ko nhớ mấy))

+)nếu p và p+d cùng số dư =>(p+d)-p chia hết cho 3 hay d chia hết cho 3

+)nếu p và p+2d cùng số dư =>(p+2d)-p chia hết cho 3 hay 2d chia hết cho 3=> d chia hết cho 3 ( vì (2,3)=1)

+)nếu p+d và p+2d cùng số dư=>(p+2d)-(p+d) chia hết cho 3 hay p chia hết cho 3

=>d chia hết cho 3                  (1)

Vì p,p+d,p+2d là số nguyên tố > 3 =>p,p+d,p+2d ko chia hết cho 2=>(p+d)-p chia hết cho 2 hay d chia hết cho 2                                             (2)

Từ (1) và (2)=> d chia hết cho 6 ( vì (2,3)=1)

17 tháng 12 2015

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

8 tháng 10 2016

đây là bài của cô Trần Thị Loan 

p là số nguyên tố > 3 => p lẻ 

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1 

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d =  3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Ví dụ: 3 số nguyên tố đó là 5;7 và 11

Ta gọi 5;7 và 11 lần lượt là a,b,c.

=> (c-a):6= 1

-> chia hết

-> Đúng

-> điều phải chứng mình