\(\dfrac{b}{a-c}=\dfrac{a+b}{c}=\dfrac{a}{b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Ta có: a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/c+a+b

= a+b+c/a+b+c = 1 (Áp dụng tính chất dãy tỉ số bằng nhau)

Trường hợp 1 : Nếu a+b+c = 0 => a=0; b=0 ; c=0 => P =1

Trường hợp 2: Nếu a+b+c khác 0 => a+b+c = 1

=> a+b = 1-c => b+c = 1-a

=> a+c = 1-b

Ta lại có:

1-c-c/c =1 => 1- 2c/c =1 => 1-2c = c => 1 = 3c=> c= 1/3

1-a-c/a = 1 => 1- 2a/a=1 => 1-2a =a => 1 = 3a => a= 1/3

1-b-b/b = 1 => 1-2b/b = 1 => 1-2b = b => 1= 3b => b= 1/3

=> P= (1+ 1/3 : 1/3). (1+ 1/3 : 1/3). ( 1+ 1/3 :1/3)

= 2 . 2. 2 =8

Vậy P = 1 hoặc = 8

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Lời giải:

a) Vì \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a-b< 0\). Kết hợp với $a,b,c>0$

Do đó:

\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{ac-bc}{b(b+c)}=\frac{c(a-b)}{b(b+c)}<0\)

\(\Rightarrow \frac{a}{b}< \frac{a+c}{b+c}\)

b) \(\frac{a}{b}> 1\Rightarrow a> b\Rightarrow a-b> 0\). Kết hợp với $a,b,c$ dương

Do đó:
\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{c(a-b)}{b(b+c)}>0\)

\(\Rightarrow \frac{a}{b}> \frac{a+c}{b+c}\)

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

3 tháng 11 2018

\(a,\)

Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(b,\)

\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)

\(c,\)

Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(d,\)

\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

\(e,\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)

\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)

16 tháng 8 2018

Ta có : \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)(1)
Thêm ab vào 2 vế của (1) : \(ad+ab< bc+ab\)
\(a\left(d+b\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\text{ }\left(2\right)\)
Thêm cd vào 2 vế của (1) : \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\text{ }\left(3\right)\)
Từ (2) và (3) ta có : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)\(\left(đpcm\right)\)

19 tháng 3 2017

TH1:a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow H=\dfrac{b+a}{b}.\dfrac{c+b}{c}.\dfrac{a+c}{a}=\dfrac{\left(-c\right)\left(-b\right)\left(-a\right)}{b.c.a}=-1\)

TH2:\(a+b+c\ne0\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

\(\Rightarrow H=\dfrac{b+a}{b}.\dfrac{c+b}{c}.\dfrac{a+c}{a}=\dfrac{\left(2c\right)\left(2b\right)\left(2a\right)}{b.c.a}=8\)

Vậy H=-1 hoặc H=8

19 tháng 3 2017

c)

Ta có \(a< b< c< d< m< n\)

\(\Rightarrow\left\{{}\begin{matrix}a< b\\c< d\\m< n\end{matrix}\right.\)

\(\Rightarrow a+c+m\le b+d+n\)

\(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)

\(\Leftrightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Leftrightarrow a+c+m< b+d+n\) ( thỏa mãn đề bài )

\(\Rightarrow\) đpcm

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)