\(\dfrac{a^{ }}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

ta có:\(\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=>\(\left[\dfrac{a}{c+b}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right].\left(a+b+c\right)=a+b+c\)

=>\(\dfrac{a^2}{c+b}+\dfrac{ab}{a+c}+\dfrac{ac}{a+b}+\dfrac{b^2}{a+c}+\dfrac{ba}{c+d}+\dfrac{bc}{a+b}+\dfrac{ca}{c+d}+\dfrac{cb}{a+c}+\dfrac{c^2}{a+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{c+b}=a+b+c\)=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)

chúc bạn học tốt ^ ^

9 tháng 8 2017

1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)

\(\Rightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=45\)

\(\Rightarrow x^2+y^2-2xy=9\)

\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)

Vậy...

a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)

b: 2x^2+x=0

=>x(2x+1)=0

=>x=0(loại) hoặc x=-1/2(nhận)

Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)

c: Để A=1/2 thì -4/x+2=1/2

=>x+2=-2

=>x=-4

3 tháng 3 2017

Ta co: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]\\ \)

{Có thể c/m bằng cách ghép--> không thuộc 7 HDT , tuy nhiên cũng nên nhớ }

\(B=\dfrac{\left(a+b+c\right)\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}{\left[\left(a^2+b^2+c^2\right)-ab-ac-bc\right]}=\left(a+b+c\right)=2016\)

3 tháng 3 2017

ban oi cho minh hoi -3abc di mo roi

12 tháng 5 2018

A = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

A = \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)

Áp dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :
\(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)\(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) ( * )

Ta lại có BĐT : x2 + y2 + z2 ≥ xy + yz + zx

⇒ a2 + b2 + c2 ≥ ab + bc + ac

⇔ ( a + b + c)2 ≥ 3( ab + bc + ac)

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ac}\) ≥ 3 ( **)

Từ ( *;**) ⇒ \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)\(\dfrac{3}{2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)\(\dfrac{3}{2}\)

12 tháng 5 2018

Đời về cơ bản là buồn... cười!!!Phùng Khánh LinhHong Ra Onchú tuổi gìNguyễn Ngô Minh TríNhã Doanh, và nhiều bạn khác...

15 tháng 5 2018

AM-GM:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2}\cdot\dfrac{1}{a}}=\dfrac{2}{b}\)

\(\dfrac{b}{c^2}+\dfrac{1}{b}\ge\dfrac{2}{c}\)

\(\dfrac{c}{a^2}+\dfrac{1}{c}\ge\dfrac{2}{a}\)

Cộng vế theo vế ta có:\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)(đpcm)