Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại
\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
áp dụng bđt cauchy ta có:
\(b^2+1\ge2b;c^2+1\ge2c;a^2+1\ge2a\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2b}+c-\frac{ca^2}{2a}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\)
áp dụng cauchy ta có:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=1
đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\le3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\left(\frac{ab+bc+ca}{2}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\left(Q.E.D\right)\)
\(BDT\Leftrightarrow\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\ge\frac{1}{4}\)
Ta có BĐT phụ: \(\frac{a^3}{\left(1-a\right)^2}\ge a-\frac{1}{4}\)
\(\Leftrightarrow\frac{\left(3a-1\right)^2}{4\left(a-1\right)^2}\ge0\forall0< a\le\frac{1}{3}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b^3}{\left(1-b\right)^2}\ge b-\frac{1}{4};\frac{c^3}{\left(1-c\right)^2}\ge c-\frac{1}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\left(a+b+c\right)-\frac{1}{4}\cdot3=1-\frac{3}{4}=\frac{1}{4}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT cô si ta có:
\(\frac{a^3}{\left(b+c\right)^2}+\frac{1a}{4}\ge\frac{a^2}{b+c}\)\(,\frac{b^3}{\left(c+a\right)^2}+\frac{1b}{4}\ge\frac{b^2}{a+c},\frac{c^3}{\left(a+b\right)^2}+\frac{1c}{4}\ge\frac{c^2}{a+b}\)
Cộng lại ta có
\(VT\ge\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}-\frac{1}{4}\left(a+b+c\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)
Dấu =tự tìm Ok
Với a, b, c dương thỏa mãn a + b + c = 3, ta có: \(\Sigma\frac{a}{ab+1}=\Sigma\left(a-\frac{a^2b}{ab+1}\right)\ge3-\Sigma\frac{a^2b}{2\sqrt{ab}}\)
\(=3-\frac{1}{2}\Sigma\sqrt{a^3b}\)
Ta đi chứng minh BĐT phụ sau: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)
Đặt \(\left(a^2+bc-ab;b^2+ca-bc;c^2+ab-ca\right)\rightarrow\left(x;y;z\right)\)
Áp dụng BĐT quen thuộc sau: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\), ta được:
(*)
(Mình gõ bằng chương trình Universal Math Solver, không hiện ảnh thì vô thống kê hỏi đáp của mình, chiều ngày 31/5/2020)
Khai triển VP của BĐT (*), ta được biểu thức: \(3\left(a^3b+b^3c+c^3a\right)\)
Vậy ta được \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)
Áp dụng, ta được: \(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\)
\(\Rightarrow\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\le3\)\(\Rightarrow3-\frac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\frac{3}{2}=\frac{3}{2}\)
hay \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi a = b = c = 1
Bn thiếu đề nhé : \(DK:abc=1\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\)
Tương tự \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3}{4}b\)
Và .\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)
Cộng vế với vế của các bđt trên ta được :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}+\frac{1}{4}\left(a+b+c\right)+\frac{3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) (ĐPCM)
Bài 1 :
Áp dụng BĐT Cô - si cho 3 số không âm
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)
\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)
\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)
Cộng theo vế , ta được :
\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+3\)
\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(đpcm\right)\)
Cho $a, b>0$.Chứng minh rằng $\frac{1}{{a^3 }} + \frac{{a^3 }}{{b^3 }} + b^3 \ge \frac{1}{a} + \frac{a}{b} + b$ - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán