Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 2/3a=3/4b=1/3c
=>8a=9b=4c
=>a/9=b/8=c/18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{18}=\dfrac{a+b+c}{9+8+18}=\dfrac{20}{35}=\dfrac{4}{7}\)
Do đó: a=36/7; b=32/7; c=72/7
Gọi ba số cần tìm lần lượt là a,b,c(a,b,c>0)
Theo đề, ta có: \(a=\dfrac{4}{3}b=\dfrac{3}{4}c\)
=>12b=16c=9c
=>a/12=b/9=c/16
Đặt a/12=b/9=c/16=k
=>a=12k; b=9k; c=16k
=>k>0(Vì a>0; b>0;c>0)
a^2+b^2+c^2=481
=>144k^2+81k^2+256k^2=481
=>k^2=1
=>k=1
=>a=12; b=9; c=16
Gọi 3 số dương lần lượt là a,b,c
ta có:a2+b2+c2=181
và b=\(\dfrac{3}{4}\).a=\(\dfrac{2}{3}\).c
=>\(\dfrac{b}{6}=\dfrac{3a}{4.6}=\dfrac{2c}{3.6}=\dfrac{b}{6}=\dfrac{a}{8}=\dfrac{c}{9}\)
=>\(\dfrac{b^2}{36}=\dfrac{a^2}{64}=\dfrac{c^2}{81}=\dfrac{a^2+b^2+c^2}{64+36+81}=\dfrac{181}{181}=1\)=>\(\left\{{}\begin{matrix}a^2=64\\b^2=36\\c^2=81\end{matrix}\right.=>\left\{{}\begin{matrix}a=\pm8\\b=\pm6\\c=\pm9\end{matrix}\right.\)
Vì a,b,c>0=>(a,b,c)=(8,6,9)
a) \(\left(x+\dfrac{1}{2}\right)^2\)=\(\dfrac{4}{9}=\left(\dfrac{2}{3}\right)^2=\left(\dfrac{-2}{3}\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)
b)\(|x+\dfrac{97}{306}|\)\(\)\(+5=-1\)
\(\Leftrightarrow|x+\dfrac{97}{106}|=-1-5=-1+\left(-5\right)=-6\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
Bài 2: Gọi 3 số lần lượt là a,b,c(a,b,c<481)
Ta có: \(a^2+b^2+c^2=481\left(1\right)\)
\(\dfrac{4}{3}a=b\Leftrightarrow a=\dfrac{3b}{4}\left(2\right)\)
\(\dfrac{3}{4}c=b\Leftrightarrow c=\dfrac{4b}{3}\left(3\right)\)
Từ \(\left(1\right),\left(2\right)va\left(3\right)\)ta có: \(\left(\dfrac{3b}{4}\right)^2+b^2+\left(\dfrac{4b}{3}\right)^2\)\(=481\)
\(\Rightarrow b=12\)
\(\Rightarrow a=\dfrac{3b}{4}=\dfrac{3.12}{4}=\dfrac{36}{4}=9\)
\(\Rightarrow c=\dfrac{4b}{3}=\dfrac{4.12}{3}=\dfrac{48}{3}=16\)
Tiên T.I.C.K Hiền nhoa!!^_^
Gọi chiều dài mỗi tấm vải lần lượt là x (m); y (m); z (m) Theo đề, ta có: x/2 = y/3 = z/4 và x + y + z = 108 Theo tính chất của dãy tỉ số bằng nhau, ta có: Vậy Tấm vải 1 dài 24 mét; Tấm vải 2 dài 36 mét; Tấm vải 3 dài 48 mét.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
gọi \(x_1\) là số đo góc số 1 ; \(x_2\) là số đo góc số 2 ; \(x_3\) là số đo góc số 3
điều kiện : \(x_1;x_2;x_3>0\) và \(x_1+x_2+x_3=180\) ............(1)
ta có : số đo góc thứ nhất bằng \(\dfrac{2}{3}\) số đo góc thứ 2
\(\Rightarrow x_1=\dfrac{2}{3}x_2\) .....................................(2)
ta có : số đo góc thứ hai bằng \(\dfrac{1}{2}\) số đo góc thứ 3
\(\Rightarrow x_2=\dfrac{1}{2}x_3\)................................ (3)
từ (1) ; (2) và (3) ta có hệ : \(\left\{{}\begin{matrix}x_1+x_2+x_3=180\\x_1=\dfrac{2}{3}x_2\\x_2=\dfrac{1}{2}x_3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{360}{11}\\x_2=\dfrac{540}{11}\\x_3=\dfrac{1080}{11}\end{matrix}\right.\) vậy .........................................................................................
Gọi ba góc của tam giác lần lượt là: a,b,c (a,b,c ϵ N*)
Theo bài ra ta có:
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)và\(\dfrac{b}{1}=\dfrac{c}{2}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{6}\)
mặt khác: a+b+c=180 (tổng ba góc trong một tam giác)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{6}=\dfrac{a+b+c}{2+3+6}=\dfrac{180}{11}\)
=> a =\(\dfrac{180}{11}\cdot2\)=360/11
=>b=180 / 11 * 3 =540/11
=> c= 180/11 * 6=1080/11
gọi số thứ nhất ; số thứ 2; số thứ 3 lần lượt là a; b; c
theo đề bài: \(\frac{a}{b}=\frac{14}{15};\frac{b}{c}=\frac{9}{10};2a+3b-4c=19\)
=> \(\frac{a}{14}=\frac{b}{15}\);
\(\frac{b}{9}=\frac{c}{10}\Rightarrow\frac{9}{15}.\frac{b}{9}=\frac{9}{15}.\frac{c}{10}\Rightarrow\frac{b}{15}=\frac{3c}{50}\)
=> \(\frac{a}{14}=\frac{b}{15}=\frac{3c}{50}=k\)
=> a = 14.k ; b = 15.k ; c = \(\frac{50}{3}\).k. Thay vào 2a + 3b - 4c = 19
=> 2.14k + 3.15.k - 4.\(\frac{50}{3}\).k = 19
<=> 84.k + 135.k - 200.k = 57 <=> 19.k = 57 <=> k = 3
Vậy a = 14.k = 14.3 = 42
b = 15.k = 15.3 = 45
c = 50/3 . k = 50/3 . 3 = 50
Vậy....
C1: Gọi ba số lần lượt là a,b,c
Ta có: \(b=\frac{4}{3}a\Rightarrow4a=3b\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a}{9}=\frac{b}{12}\)
\(b=\frac{3}{4}c\Rightarrow4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{12}=\frac{c}{16}\)
\(\Rightarrow\frac{a}{9}=\frac{b}{12}=\frac{c}{16}\Rightarrow\frac{a^2}{81}=\frac{b^2}{144}=\frac{c^2}{256}=\frac{a^2+b^2+c^2}{81+144+256}=\frac{481}{481}=1\)
=> \(\frac{a^2}{81}=1\Rightarrow a^2=81\Rightarrow a=\pm9\)
\(\frac{b^2}{144}=1\Rightarrow b^2=144\Rightarrow b=\pm12\)
\(\frac{c^2}{256}=1\Rightarrow c^2=256\Rightarrow c=\pm16\)
C2: Làm tiếp phần c1
Đặt \(\frac{a}{9}=\frac{b}{12}=\frac{c}{16}=k\Rightarrow a=9k,b=12k,c=16k\)
Ta có: a2 + b2 + c2 = 481
=> (9k)2 + (12k)2 + (16k)2 = 481
=> 81k2 + 144k2 + 256k2 = 481
=> k2(81 + 144 + 256) = 481
=> 481k2 = 481
=> k2 = 1
=> k = \(\pm\)1
Với k = 1 => a = 9, b = 12, c = 16
Với k = -1 => a = -9, b = -12, c = -16
Vậy...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{7}{6}}=\dfrac{b}{\dfrac{11}{9}}=\dfrac{c}{\dfrac{3}{2}}=\dfrac{a+b+c}{\dfrac{7}{6}+\dfrac{11}{9}+\dfrac{3}{2}}=\dfrac{420}{\dfrac{35}{9}}=108\)
Do đó: a=126; b=132; c=162