K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
HL
1
TN
22 tháng 10 2017
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)
Khi \(a=b=c=1\)
HA
15 tháng 9 2017
Trong ba điều kiện cho trên thì ta có 1 số 1 còn 2 số kia =0 từ đó khẳng định a^2009+b^2009+c^2009=1
15 tháng 9 2017
Mình cần chứng minh ra nó gồm 1 số =1 và 2 số =0 mà bạn =)))))))
CHÚ Ý: BÀI TOÁN SAU:
Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
Trở lại với bài toán: chú ý: a-1+b-1+c-1=0
=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)
đặt: x=a-1, y=b-1, z=c-1
khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)
Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)
Áp dung BĐT Cauchy và biến đổi đồng nhất
tương tự với -x và -z cộng lại ta được DPCM