K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Để hai đường thẳng vuông góc :

\(\Leftrightarrow m\left(4m-5\right)=-1\Leftrightarrow4m^2-5m+1=0\Rightarrow\orbr{\begin{cases}m=1\\m=\frac{1}{4}\end{cases}}\)

b ) Gọi điểm cố định mà \(d_2\) đi qua là M \(\left(x_0;y_0\right)\)

\(\Rightarrow y_0=\left(4m-5\right)x_0+3m\forall m\)

\(\Leftrightarrow m\left(4x_0+3\right)-\left(5x_0+y_0\right)=0\)

\(\Rightarrow\hept{\begin{cases}4x_0+3=0\\5x_0+y_0=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=-\frac{3}{4}\\y_0=\frac{15}{4}\end{cases}\Rightarrow}M\left(-\frac{3}{4};\frac{15}{4}\right)}\)

a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)

b: (d): \(y=-\left(2m-1\right)x-m+1\)

\(=-2mx+x-m+1\)

\(=m\left(-2x-1\right)+x+1\)

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)

vậy: B(0;-m+1)

\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)

\(=\left|m-1\right|\)

Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)

\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)

=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)

=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)

TH1: m>1/2

Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)

=>\(m^2-2m+1=4m-2\)

=>\(m^2-6m+3=0\)

=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)

TH2: m<1/2

Phương trình (2) sẽ tương đương với:

\(\left(m-1\right)^2=2\left(-2m+1\right)\)

=>\(m^2-2m+1=-4m+2\)

=>\(m^2-2m+1+4m-2=0\)

=>\(m^2+2m-1=0\)

=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)

7 tháng 11 2017

Bài 3 làm sao v ạ?

29 tháng 12 2023

a: Để (d) cắt (d1) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)

b: Tọa độ giao điểm của d1 và d2 là:

\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=1/2 và y=5/2 vào (d), ta được:

\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)

=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)

=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)

=>m=1

c: (d): y=(m-2)x+m+2

=mx-2x+m+2

=m(x+1)-2x+2

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)

NV
19 tháng 11 2019

1/ Phương trình tọa độ giao điểm A của (d1) và (d2):

\(\left\{{}\begin{matrix}y=x-1\\y=2x-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)

Để 3 đường thẳng đồng quy \(\Rightarrow\) (d3) qua A

\(\Rightarrow2k+7=1\Rightarrow k=-3\)

2/ Gọi tọa độ điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow y_0=\left(m+4\right)x_0-m+6\) \(\forall m\)

\(\Rightarrow\left(x_0-1\right)m+4x_0-y_0+6=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\4x_0-y_0+6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=10\end{matrix}\right.\) \(\Rightarrow M\left(1;10\right)\)

Để đường thẳng tạo với trục Ox 1 góc \(45^0\)

\(\Rightarrow m+4=tan45^0=1\Rightarrow m=-3\)

10 tháng 4 2020

a) ( d) : y = 3mx -1 - m 

<=> y + 1 =( 3x -1 ) 

Ta có : \(\forall m\inℝ\) ta luôn có nghiệm : \(\hept{\begin{cases}y+1=0\\3x-1=0\end{cases}}\)

                                               \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-1\end{cases}}\)

Vậy ( d ) luôn đi qua điểm cố định ( 1 / 3 ; -1 ) 

b) Phương trình hoành độ g điểm giữa ( P ) và ( d ) 

\(\frac{1}{2}x^2=3mx-1-m\left(1\right)\)

<=> x2 -6mx + 2m + 2 =0 ( ko chắc lắm ) 

\(\Delta'=\left(3m\right)^2-2m-2=9m^2-2m-2\)

Để (P) tiếp xúc với (d) =>PT ( 1 ) có nghiệm kép => \(\Delta'=0\Leftrightarrow9m^2-2m-2=0\)

                                                                                 \(\Delta'=19\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{1-\sqrt{19}}{9}\\m_2=\frac{1+\sqrt{19}}{9}\end{cases}}\)