Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hoành độ giao điểm là nghiệm của phương trình:
`x+3=-2x+m^2-1`
`<=>3x-m^2+4=0`
2 đường thẳng cắt nhau tại 1 điểm trên trục tung `<=> x=0`
`=> 3.0-m^2+4=0`
`<=>m=\pm 2`
để (d1) và (d2) cắt nhau tại 1 điểm trên trục tung khi
\(\left\{{}\begin{matrix}1\ne-2\left(luondung\right)\\3=2m-1< =>m=2\end{matrix}\right.\)
Vậy. m=2 thì (d1) và(d2) cắt nhau tại 1 điểm trên trục tung

Bạn xem lại các đường (d2) và (d3) có lỗi gì không nhỉ ??
*Tại hệ số to quá tận -43 với -13

a, tự vẽ nhé
b, * Vì d3 cắt d1, hoành độ giao điểm thỏa mãn phương trình
\(-\frac{1}{3}x+3=2x-2\Leftrightarrow-\frac{7}{3}x=-5\Leftrightarrow x=\frac{15}{7}\)
Thay x = 15/7 vào d1 ta được : \(y=\frac{30}{7}-2=\frac{16}{7}\)
* Vì d3 cắt d2, hoành độ giao điểm thỏa mãn phương trình
\(-\frac{4}{3}x-2=-\frac{1}{3}x+3\Leftrightarrow-x=5\Leftrightarrow x=-5\)
Thay x = -5 vào d2 ta được : \(y=\frac{20}{3}-2=\frac{14}{3}\)
Vậy d3 cắt d1 tại A ( 15/7 ; 16/7 )
d2 cắt d1 tại B( -5 ; 14/3 )

Bạn ơi, câu hỏi có vẻ thiếu một số thông tin hoặc có nhầm lẫn nhỏ trong phần mô tả (như “trung điểm của \(B C\)” — chưa biết điểm \(C\) ở đâu), nên mình sẽ giả sử và giải bài theo cách thông thường nhất liên quan đến đường tròn, tiếp tuyến, và trục đối xứng nhé!
Giả sử đề bài như sau:
Cho đường tròn \(\left(\right. O ; R \left.\right)\) và một đường thẳng \(x\) cắt đường tròn tại hai điểm phân biệt \(A\) và \(B\). Gọi \(y\) là đường thẳng đi qua trung điểm của đoạn thẳng \(A B\) và vuông góc với \(A B\).
Chứng minh: Đường thẳng \(y\) là trục đối xứng của đường tròn \(\left(\right. O \left.\right)\).
Lời giải:
- Gọi \(M\) là trung điểm của đoạn \(A B\).
- Vì \(A , B\) thuộc đường tròn \(\left(\right. O ; R \left.\right)\), ta có:
\(O A = O B = R\)
- Đường thẳng \(y\) đi qua \(M\) và vuông góc với \(A B\). Đây là đường trung trực của đoạn \(A B\).
- Vì \(O\) nằm trên đường trung trực của \(A B\) (vì \(O A = O B\)) nên \(O\) cũng nằm trên đường thẳng \(y\).
- Đường thẳng \(y\) đi qua tâm \(O\) và vuông góc với \(A B\), nên \(y\) là trục đối xứng của đoạn \(A B\).
- Vì đường tròn là hình tròn tâm \(O\), có tính đối xứng trục qua mọi đường thẳng đi qua \(O\).
- Như vậy, \(y\) là trục đối xứng của đường tròn \(\left(\right. O \left.\right)\).
Kết luận:
- Đường thẳng đi qua trung điểm \(M\) của đoạn \(A B\) và vuông góc với \(A B\) là trục đối xứng của đường tròn \(\left(\right. O ; R \left.\right)\).
1) Gọi điểm cố định là \(M\left(x_0;y_0\right)\)
\(\Leftrightarrow mx_0-m+1=y_0\) \(\left(\forall m\right)\)
\(\Leftrightarrow m\left(x_0-1\right)=y_0-1\) \(\left(\forall m\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-1=0\\y_0-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=1\\y_0=1\end{matrix}\right.\)
Vậy (d1) luôn đi qua điểm cố định \(\left(1;1\right)\)
2) Xét phương trình hoành độ giao điểm của (d2) và (d3)
\(2x+3=x+1\) \(\Leftrightarrow x=-2\), thay vào (d3) ta được \(y=-1\)
\(\Rightarrow\) (d3) cắt (d2) tại \(F\left(-2;-1\right)\)
Để 3 đường cắt nhau tại 1 điểm \(\Leftrightarrow F\in\left(d_1\right)\)
\(\Leftrightarrow-2m-m+1=-1\) \(\Leftrightarrow m=\dfrac{2}{3}\)
Vậy ...