K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
13 tháng 6 2019

25 tháng 4 2019

B A C D E F S

a)   Tam giác ABD và EBD có:

Góc ABD = EBD (BD là phân giác)

Cạnh BA = BE (gt)

Cạnh BD chung

=> Tam giác ABD = EBD (c-g-c)   (*)

b)  Từ (*) => góc BED = 90 độ (= góc BAD)

=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE  (1)

mà từ (*) => DE = AD  (2)

Từ (1) và (2) => DC > AD

c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm

Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC

=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.

Vậy B, D, S thẳng hàng.

26 tháng 3 2024

α⚽

Bài làm

Gọi giao điểm của BD và AI là O

Xét tam giác AOB và tam giác IOB có:

^AOB = ^IOB = 00°

BO chung

^ABO = ^IBO ( do BD phân giác )

=> ∆AOB = ∆IOB ( g.c.g )

=> AO = OI

=> O là trung điểm của AI.

Mà BD vuông góc với AI tại O

=> BD là trung trực của AI

14 tháng 3 2020

ko ai giúp mik à

14 tháng 3 2020

A B C E D I 1 2

A) XÉT \(\Delta BAD\)\(\Delta BED\)

 \(BA=BE\left(GT\right)\)

\(\widehat{ABD}=\widehat{EBD}\left(GT\right)\)

BD LÀ CẠNH CHUNG

=>\(\Delta BAD\)=\(\Delta BED\)(C-G-C)

=>DA=DE (HAI CẠNH TƯƠNG ỨNG)

B)TA CÓ ​\(\Delta BAD=\Delta BED\left(CMT\right)\)

\(\Rightarrow\widehat{A}=\widehat{BED}=90^o\)

C) XÉT \(\Delta BAI\)VÀ \(\Delta BEI\)

\(BA=BE\left(GT\right)\)

\(\widehat{ABI}=\widehat{EBI}\left(GT\right)\)

BI LÀ CẠNH CHUNG

\(\Rightarrow\Delta BAI=\Delta BEI\left(C-G-C\right)\)

​=>AI=IE(HAI CẠNH TƯƠNG ỨNG)\(\left(1\right)\)
\(\Rightarrow\widehat{I_1}=\widehat{I_2}\left(HGTU\right)\)

MÀ \(\widehat{I_1}+\widehat{I_2}=180^0\left(kb\right)\)

​THAY\(\widehat{I_2}+\widehat{I_2}=180^o\)

\(2\widehat{I_2}=180^0\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\frac{180^o}{2}=90^0\left(2\right)\)

từ (1) và (2) =>BD là đường trung trực của AE