Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
1.Ta có :\(P=\frac{-n+2}{n-1}=\frac{-n+1+1}{n-1}=-1+\frac{1}{n-1}\)
Để\(P\in Z\)thì\(\frac{1}{n-1}\in Z\Rightarrow1⋮n-1\)=> n - 1 = -1 ; 1 => n = 0 ; 2
2.Ta có :\(M=\frac{6n-3}{4n-6}=\frac{3\left(2n-3\right)+6}{2\left(2n-3\right)}=\frac{3}{2}+\frac{3}{2n-3}\)
Để M lớn nhất thì\(\frac{3}{2n-3}\)lớn nhất => 2n - 3 nguyên dương và nhỏ nhất,tức 2n - 3 = 1 => n = 2
Vậy n = 2 thì M đạt giá trị lớn nhất là :\(\frac{3}{2}+\frac{3}{1}=\frac{9}{2}\)
3.a) TH1 : A nằm cùng phía với B,C thì trên cùng tia Ax (hay Ay),ta có AB < AC ( a < b) nên B nằm giữa A và C.Suy ra :
- AB + BC = AC => BC = AC - AB = b - a
- 2 tia BA,BC đối nhau mà 2 tia BI,BA trùng nhau (vì I thuộc đoạn AB) nên 2 tia BI,BC đối nhau => B nằm giữa I,C
=> IC = BI + BC mà BI =\(\frac{AB}{2}=\frac{a}{2}\)(I là trung điểm AB) nên IC =\(\frac{a}{2}+b-a=b-\frac{a}{2}\)
TH2 : A nằm khác phía với B,C hay A nằm giữa B,C thì 2 tia AB,AC đối nhau mà AI,AB trùng nhau (vì I thuộc đoạn AB)
=> 2 tia AI,AC đối nhau => A nằm giữa I,C => IC = IA + AC mà IA =\(\frac{AB}{2}=\frac{a}{2}\)(I là trung điểm AB) => IC =\(\frac{a}{2}+b\)
b) Ta có 3 trường hợp :
TH1 : Cả 4 điểm đều nằm trên 1 nửa mặt phẳng bờ xy thì xy không cắt đoạn nào trong 6 đoạn trên
TH2 : 1 điểm và 3 điểm còn lại nằm trên 2 nửa mặt phẳng đối nhau bờ xy.Ví dụ điểm M và 3 điểm N,P,Q thì xy cắt 3 đoạn : MN,MP,MQ
TH3 : 2 điểm và 2 điểm còn lại nằm trên 2 nửa mặt phẳng đối nhau bờ xy.Ví dụ điểm M,N và điểm P,Q thì xy cắt 4 đoạn : MP,MQ,NP,NQ
Đúng không đây để mình chép với, cô mình cũng ra đề như thế này nè!
A C B x 3cm 5cm
a. Trong ba điểm A, B, C điểm nào nằm giữa hai điểm còn lại?
Trên tia Ax, ta có: AC < AB (vì 3cm < 5cm)
=> Điểm C nằm giữa A và B
b. Tính độ dài đoạn thẳng BC
Ta có: Điểm C nằm giữa A và B
=> AC + BC = AB
Hay 3 + BC = 5
=> BC = 5 - 3 = 2(cm)
A M C B
Vì MC = MB + BC ( 1 )
AC + BC = AM + MB + BC + BC = 2MB + 2BC ( 2 )
Từ ( 1 ) và ( 2 ) => \(MB+MC=\frac{1}{2}\left(2MB+2BC\right)\)
\(\Rightarrow MC=\frac{1}{2}\left(AC+BC\right)\) ( đpcm )
a) Điểm B nằm giữa hai điểm A và C
Vì 3cm < 7cm nên AB < AC
b) Vì B nằm giữa hai điểm A và C
Nên AB + BC = AC
Hay 3 + BC = 7
=> BC = 7 – 3 = 4cm
c) Ta có: M là trung điểm của đoạn thẳng BC
=> MB=MC=BC:2=4:2=2cm
a, Trên tia Ax có AB < AC ( vì 3cm < 7cm )
nên điểm A nằm giữa 2 điểm B và C
b, Khi đó ta có : BC +AB = AC
\(\Rightarrow\) BC = AC - AB
hay BC = 7 - 3
\(\Rightarrow\) BC = 4 (cm)
Đường thẳng d chia mặt phẳng ra hai nửa mặt phẳng. Ta xét hai trường hợp sau:
- Trường hợp 1: Ba điểm A, B,C thuộc cùng một nửa mặt phằng bờ d thì dễ thấy đường thẳng d không cắt đoạn thẳng nào trong ba đoạn thẳng AB, BC,CA.
- Trường hợp 2: Ba điểm A, B, C không thuộc cùng một nửa mặt phẳng, tức là có một nửa mặt phẳng chứa hai điểm và một nửa mặt phẳng còn lại chứa một điểm. Khi đó, ta có đường thẳng d cắt hai trong ba đoạn thẳng AB, BC,CA.