Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt n2 + 2006 = a2
a2 - n2 = 2006
(a - n)(a + n) = 2006
Nếu a,n khác tính chẵn lẻ thì (a - n)(a + n) lẻ => Loại
Nếu a,n cùng tính chẵn lẻ thì (a - n)(a+ n) chia hết cho 4
Mà 2006 không chia hết cho 4 => Loại
Vậy không có số n thõa mãn
b) Nếu n là số nguyên tố > 3
=> n chia 3 dư 2 hoặc n chia 3 dư 1
=> n2 chia 3 dư 1 => n2 + 2006 chia hết cho 3
Vậy n2 + 2006 là hợp số
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1/
Gọi tổng này là A.
A=6+62+63+64+...+697+698+699+6100
A=(6.1+6.6+6.62+6.63)+...+(697.1+697.6+697.62+697.63)
A=6.(1+6+62+63)+...+697.(1+6+62+63)
A=6.259+...+697.259
A=259.(6+...+697) chia hết cho 259
2/
(hình như số cuối cùng phải là 1000)
3/
Không,vì còn số 0 và 1 không là số nguyên tố hay hợp số
1. Ta có: A = 30 + 31 + 32 + ... + 3100
3A = 3.(1 + 3 + 32 + ... + 3100)
3A = 3 + 32 + 33 + ... + 3101
3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
Vậy ...
Baif1 :
đặt \(A=3^0+3^1+3^2+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)