Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 550 - 548 + 546 - 544 + .... + 52 - 1
=> 52A = 25A = 552 - 550 + 548 - 546 + .... + 53 - 52
=> 25A + A = (552 - 550 + 548 - 546 + .... + 53 - 52) + (550 - 548 + 546 - 544 + .... + 52 - 1)
=> 26A = 552 - 1
=> A = \(\frac{5^{52}-1}{26}\)
b) Sửa đề : Tìm n sao cho 26A + 1 = 511 + n
Khi đó 26A + 1 = 511 + n
<=> 552 - 1 + 1 = 511 + n
<=> 552 = 511 + n
<=> 11 + n = 52
<=> n = 41
c) Ta có A - 24 = 550 - 548 + 546 - 544 + .... + 56 - 54
= 548(52 - 1) + 544(52 - 1) + .... + 54(52 - 1)
= (52 - 1)(548 + 544 + ... + 54)
= 24.(548 + 544 + ... + 54)
= 24.52(546 + 542 + ... + 1)
= 24.25.(546 + 542 + ... + 1)
= 600.(546 + 542 + ... + 1) = 6.100.(546 + 542 + ... + 1) \(⋮100\)
Vì A - 24 \(⋮\)100
=> A chia 100 dư 24
Ta có : B = 550 - 549 + 548 - 547 + .... + 52 - 5 + 1
=> 5B = 551 - 550 + 549 - 548 + ... + 53 - 52 + 5
Khi đó 5B + B = (551 - 550 + 549 - 548 + ... + 53 - 52 + 5) + (550 - 549 + 548 - 547 + .... + 52 - 5 + 1)
=> 6B = 551 + 1
=> B = \(\frac{5^{51}+1}{6}\)
Vậy \(B=\frac{5^{51}+1}{6}\)
<=> 5B = 551 - 550 + 549 - ...... - 52 + 5
<=> 5B + B = 551 - 550 + 550 - 549 + 549 - ... + 5 - 5 + 1
<=> 6B = 551 + 1
<=> B = (551 + 1)/6
Bài giải
a) Ta có: A = 550 - 548 + 546 - 544 +...+ 56 - 54 + 52 - 1
=> A = (550 - 548) + (546 - 544) +...+ (56 - 54) + (52 - 1)
=> A = (548.52 - 548.1) + (544.52 - 544.1) +...+
(54.52 - 54.1) + 50.(52 - 1)
=> A = 548.(52 - 1) + 544.(52 - 1) +...+ 54.(52 - 1) +
50.(52 - 1)
=> A = (52 - 1).(548 + 544 +...+ 54 + 50)
a) ( x-140):7=33 -23 -3
(x-140):7 = 27 - 8-3
(x-140):7 = 16
(x-140):7 = 16 .7
x-140 = 112
x-140 = 112+ 140
x = 252
a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(a)47-\left[\left(45.2^4-5^2.12\right):14\right]\)
\(=47-\left[\left(45.16-25.12\right):14\right]\)
\(=47-\left[\left(720-300\right):14\right]\)
\(=47-\left[420:14\right]\)
\(=47-30\)
\(=17\)
\(b)50-\left[\left(20-2^3\right):2+34\right]\)
\(=50-\left[\left(20-8\right)\right]:2+34\)
\(=50-\left[12:2+34\right]\)
\(=50-\left[6+34\right]\)
\(=50-40\)
\(=10\)
\(c)10^2-\left[60:\left(5^6:5^4-3,5\right)\right]\)
\(=10^2-\left[60:\left(5^2-3,5\right)\right]\)
\(=10^2-\left[60:\left(25-3,5\right)\right]\)
\(=10^2-\left[60:21,5\right]\)
\(=100-\dfrac{120}{43}\)
\(=\dfrac{4180}{43}\)
\(d)50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-8.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left[10:2+3\right]\)
\(=50-5+3\)
\(=50-8\)
\(=42\)
\(e)10-\left[\left(8^2-48\right).5+\left(2^3.10+8\right)\right]:28\)
\(=10-\left[\left(64-48\right).5+\left(8.10+8\right)\right]:28\)
\(=10-\left[16.5+\left(80+8\right)\right]:28\)
\(=10-\left[80+88\right]:28\)
\(=10-168:28\)
\(=10-6\)
\(=4\)
\(f)8697-\left[3^7:3^5+2.\left(13-3\right)\right]\)
\(=8697-\left[3^2+2.\left(13-3\right)\right]\)
\(=8697-\left[9+2.10\right]\)
\(=8697-9+20\)
\(=8697-29\)
\(=8668\)
\(g)2011+5\left[300-\left(17-7\right)^2\right]\)
\(=2011+5.\left[300-10^2\right]\)
\(=2011+5.\left[300-100\right]\)
\(=2011+5.200\)
\(=2011+1000\)
\(=3011\)
\(h)695-\left[200+\left(11-1\right)^2\right]\)
\(=695-\left[200+10^2\right]\)
\(=695-200+100\)
\(=695-300\)
\(=395\)
\(i)129-5\left[29-\left(6-1\right)^2\right]\)
\(=129-5\left[29-5^2\right]\)
\(=129-5\left[29-25\right]\)
\(=129-5.4\)
\(=129-20\)
\(=109\)
B= 50+52+54+...+548+550
B=?
=> B= 550-5
Ta có:
B = 5^0 + 5^2 + 5^4 + ... + 5^50
25B = 5^2 + 5^4 + 5^6 + ... + 5^52
25B - 5B = (5^2 + 5^4 + 5^6 + ... + 5^52) - (5^0 + 5^2 + 5^4 + ... + 5^50)
20B = 5^52 - 5^0
B = \(\frac{5^{52}-5^0}{20}\)