Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\) \(3\frac{3}{4}+\left(4\frac{2}{4}-3\frac{1}{2}\right):\frac{3}{4}\)
\(=\frac{15}{4}\left(\frac{18}{4}-\frac{7}{2}\right):\frac{3}{4}\)
\(=\frac{15}{4}+\frac{4}{4}:\frac{3}{4}=\frac{15}{4}+\frac{4}{3}\)
\(=\frac{15}{4}+\frac{4}{3}=\frac{61}{12}\)
\(b.\) \(7\cdot\frac{2}{3}-\frac{2}{5}:\frac{1}{2}-\frac{2}{3}\)
\(=\frac{7}{3}-\frac{2}{5}\cdot2-\frac{2}{3}\)
\(=\frac{7}{3}-\frac{4}{5}-\frac{2}{3}=\frac{35-12-10}{15}\)
\(=\frac{13}{15}\)
\(c.\) \(68,7-100:20+70,8\)
\(=68,7-5+70,8\)
\(=63,7+70,8\)
\(=134,5\)
\(d.\)\(\left(5915+445:5\right)-76\cdot25\)
\(=\left(5915+89\right)-1900\)
\(=6004-1900=4104\)
a)=\(\frac{15}{4}+\left(\frac{18}{4}-\frac{7}{2}\right)\)/ \(\frac{3}{4}\)
=\(\left(\frac{33}{4}-\frac{14}{4}\right)\)/ \(\frac{3}{4}\)
= \(\frac{19}{4}\cdot\frac{4}{3}\)
=\(\frac{19}{3}\)
b) = \(\frac{2}{3}\cdot\left(7-1\right)-\frac{2}{5}\cdot\frac{2}{1}\)
= \(\frac{2}{3}\cdot6-\frac{4}{5}\)
= 1-\(\frac{4}{5}\)
= \(\frac{1}{5}\)
c) = 68.7 - 5 + 70.8
= 63.7 + 70.8
=134.5
d) = (5915 - 89) -76*25
= 5826 - 1900
= 3926
a)13x3x32,27+67,63x39
=39x32,27+67,63x39
=39x(32,27+67,63)
=39x100
=3900
b,= 1- [ 1/2 x 1/3 x1/4 x..... x 1/100 ]
=1/2 x 2/3 x 3/4 x .......x 99/100
= 1x2x3x......x99 / 2x3x4x...... x100 [ rút gọn ]
= 1/100
a) \(\frac{3}{5}+25-\frac{1}{5}=\left(\frac{3}{5}-\frac{1}{5}\right)+25=\frac{2}{5}+25=\frac{2}{5}+\frac{125}{5}=\frac{127}{5}\)
b) \(13\times3\times32,27+67,63\times39=39\times32,27+67,63\times39\)
\(=39\times\left(32,27+67,63\right)\)
\(=39\times99,9=3196,8\)
(Bạn xem lại đề nhé)
c) \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{99}{100}\)
\(=\frac{1\times2\times3\times...\times99}{2\times3\times4\times....\times100}=\frac{1}{100}\)
a, \(\frac{3}{5}+25-\frac{1}{5}=\frac{127}{5}\)
b, \(\text{13 x 3 x 32,27 + 67,63 x 39 =}3896,1\)
............................
thank for watching me do homework
a ) \(1\frac{1}{2}+2\frac{1}{3}+3\frac{1}{6}-5\)
\(=\frac{3}{2}+\frac{7}{3}+\frac{19}{6}-\frac{5}{1}\)
\(=\frac{9}{6}+\frac{14}{6}+\frac{19}{6}-\frac{30}{6}\)
\(=\frac{23}{6}+\frac{19}{6}-\frac{30}{6}\)
\(=\frac{42}{6}-\frac{30}{6}\)
\(=\frac{12}{6}=2\)
b ) \(2\frac{2}{3}\times3\frac{3}{4}\div4\frac{4}{5}\)
\(=\frac{8}{3}\times\frac{15}{4}\div\frac{24}{5}\)
\(=\frac{120}{12}\div\frac{24}{5}\)
\(=\frac{120}{12}\times\frac{5}{24}\)
\(=\frac{600}{288}=\frac{25}{12}\)
c ) \(4\frac{1}{5}+5\frac{1}{3}-2\frac{2}{3}\times3\frac{1}{5}+\frac{9}{25}\div\frac{9}{20}\)
\(=\frac{21}{5}+\frac{16}{3}-\frac{8}{3}\times\frac{16}{5}+\frac{9}{25}\div\frac{9}{20}\)
\(=\frac{63}{15}+\frac{80}{15}-\frac{128}{15}+\frac{9}{25}\times\frac{20}{9}\)
\(=\frac{143}{15}-\frac{128}{15}+\frac{180}{225}\)
\(=\frac{15}{15}+\frac{12}{15}\)
\(=\frac{27}{15}=\frac{9}{5}\)
Ta có:
\(D=1.2+2.3+3.4+4.5+...+99.100\)
\(\Leftrightarrow3D=1.2.\left(3-0\right)+2.3+\left(4-1\right)+3.4+\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)
\(\Leftrightarrow3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(\Leftrightarrow3D=99.100.101\Leftrightarrow D=\frac{99.100.101}{3}=333300\)
\(B=1.3+2.4+3.5+4.6+...+99.101\)
\(\Leftrightarrow B=\left(1.3+3.5+...+99.101\right)+\left(2.4+4.6+...+98.100\right)\)
\(\Leftrightarrow6B=\left(1.3.\left(5-\left(-1\right)\right)+3.5.\left(7-1\right)+...+99.101.\left(103-97\right)\right)+\left(2.4.\left(6-0\right)+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\right)\)
\(\Leftrightarrow B=\frac{99.101.103+3}{6}+\frac{98.100.102}{6}=338250\)
Vì các bước gần tương tự như bài a) nên mình bỏ bước.
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
Tại cô giáo chưa dậy đến đã giao bài về nhà nên mình mới không biết làm !!!
\(\frac{3}{4}.8,4+2,8.1\frac{1}{2}\)
\(=\frac{63}{10}+\frac{21}{5}\)
\(=\frac{63}{10}+\frac{42}{10}\)
\(=\frac{63+42}{10}=10,5\)
\(a.1\frac{1}{3}+2\frac{1}{2}\)
\(=\frac{4}{3}+\frac{5}{2}\)
\(=\frac{8}{6}+\frac{15}{6}\)
\(=\frac{23}{6}\)
\(b.3\frac{2}{5}-1\frac{1}{7}\)
\(=\frac{17}{5}-\frac{8}{7}\)
\(=\frac{119}{35}-\frac{40}{35}\)
\(=\frac{79}{35}\)
\(c.3\frac{1}{2}.1\frac{1}{7}\)
\(=\frac{7}{2}.\frac{8}{7}\)
\(=4\)
\(d.4\frac{1}{6}:2\frac{1}{3}\)
\(=\frac{25}{6}:\frac{7}{3}\)
\(=\frac{25}{6}.\frac{3}{7}\)
\(=\frac{25}{14}\)
Hix bài này rất nhiều bạn hỏi và cũng dễ làm mà bạn T_T
\(3B=3^2+3^3+...+3^{101}\)
\(3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2B=3^{101}-3\)
\(B=\frac{3^{101}-3}{2}\)
\(B=3+3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow3B=3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\frac{3^{101}-3}{2}\)