Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2\)\(=\frac{\left(a+b\right).\left(a+b\right)}{\left(c+d\right).\left(c+d\right)}\)\(=\frac{a.a+b.b}{c.c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\).
Thay ab=c2 vào ta có:
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) Đpcm
nhấn vào đây nè: Câu hỏi của Nguyễn Ngọc Thảo Linh - Toán lớp 7 - Học toán với OnlineMath
nhớ ủng hộ mk mk ủng hộ lại cho!! 5764574747467567567865856856899045645234234243425
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
Do \(b^2=ac\)
=>\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}\)
=\(\frac{a\left(a+c\right)}{c\left(a+c\right)}\)
\(\frac{a}{c}\)