Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra ta có:
\(\frac{a^2+b^2}{c^2+b^2}=\frac{a^2+ac}{c^2+ac}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\text{}\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{c}{b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a^2+c^2}{b^2+c^2}\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
a) Từ \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2=\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)(1)
Ta có \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^2+c^2}{c^2+b^2}=\frac{a}{b}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)
b) Ta có \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮55\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)
\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)
Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)
a) => a/c=b/d
=>(a/c)^2 = (b/d)^2
= a^2 - b^2/ c^2-d^2 = ab/cd
điều PCM
Tử a/b=c/d suy ra : a/c=b/d = ab/cd (1) hoặc a^2/c^2=b^2/d^2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a^2/c^2=b^2/d^2 = a^2-b^2/c^2-d^2 (2)
Từ (1) và (2) ta suy ra : ab/cd = a^2-b^2/c^2-d^2
\(\frac{a}{c}=\frac{c}{b}\)
\(Đặt:a=ck,c=bk,a=bkk\)
\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{b^2k^2k^2+b^2k^2}{b^2+b^2k^2}=\frac{b^2k^2\left(k^2+1\right)}{b^2\left(1+k^2\right)}=\frac{b^2k^2}{b^2}=\frac{bk^2}{b}=\frac{a}{b}\left(đpcm\right)\)
xét vế trái ta có:
a^2+b^2/b^2+c^2
=a^2+ac/ac+c^2
=>a.(a+c)/c.(c+a)=a/c
\(bb=ac\)
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow\frac{b^2}{c^2}=\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{ac}{c^2}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)