\(b^2\)=\(ac\)chứng minh (a^2-b^2)/(b^2-c^2) =a : c

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Bài 1:
Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+c^2}\)

 

 

17 tháng 3 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)

=> a=bk ,c=dk

a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)

b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

22 tháng 9 2017

Đặt \(\frac{a}{b}=k\Rightarrow b=k.b\)

\(\frac{c}{d}=k\Rightarrow c=k.d\)

Ta có : \(\frac{ac}{bd}=\frac{k^2.bd}{bd}=k^2\) (1)

\(\frac{d^2-c^2}{b^2-d^2}=\frac{kb^2-kd^2}{b^2+d^2}\)

\(=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)

Từ (1) và (2) => đpcm

22 tháng 9 2017

Làm lại :

Đặt : \(\frac{a}{b}=k\) => b=k.b

\(\frac{c}{d}=k\) => c = k.d

Ta có : \(\frac{ac}{bd}=\frac{k^2.bd}{bd}=\frac{k^2.1}{1}=k^2\) (1)

\(\frac{d^2-c^2}{b^2-d^2}=\frac{kb^2-kd^2}{b^2-d^2}\)

\(=\left(\frac{k\left(b-d\right)}{b-d}\right)^2\)

\(=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=\frac{k^2.1}{1}=k^2\) (2)

Từ (1) và (2) => đpcm

17 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)

\(VT=\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

=>Đpcm

17 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2.k^2+b.d.k^2}{d^2.k^2-b.d.k^2}=\frac{b.k^2\left(b+d\right)}{d.k^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\) ( đpcm )

23 tháng 7 2017

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

24 tháng 7 2017

bạn ko làm hộ tớ phần b ơ

29 tháng 10 2017

Thay \(b^2=ac\)vào \(\frac{a^2+b^2}{b^2+c^2}\)ta có :

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a.\left(a+c\right)}{c.\left(a+c\right)}=\frac{a}{c}\)

Suy ra \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

Vậy....

29 tháng 10 2017

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

15 tháng 12 2016

Ta có:\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

\(\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)(T/C...)

\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(đpcm\right)\)

28 tháng 12 2016

Cảm ơn bạn nha Phạm Nguyễn Tất Đạt !!

3 tháng 10 2018

đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

ta có \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2\cdot k^2+d^2\cdot k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

suy ra đpcm