Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (điều phải chứng minh )
b) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (đpcm)
~Học tốt!~
Thêm đề: Sao cho OA < OA'. Trên tia Oy lấy 2 điểm B và B' sao cho OB< OB'. Chứng minh rằng AB<A'B' .
Giải:
O A B A' B'
\(\Delta\)A'BO có: A'AB là góc ngoài của \(\Delta\)AOB
=> ^A'AB > ^AOB mà ^AOB là góc tù
=> ^A'AB là góc tù
=> A'B > AB (1)
\(\Delta\)A'BB' có: ^A'BB' là góc ngoài của \(\Delta\)A'BB'
=> ^A'BB' > A'OB mà ^A'OB là góc tù
=> A'BB' là góc tù
=> A'B' > A'B (2)
Từ (1) và (2) => A'B'> AB
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!
Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)
Ta có: \(b^2=ac.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}.\)
\(\Rightarrow\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}\)
\(\Rightarrow\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{ab}{bc}=\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+b^2+ab}{b^2+c^2+bc}.\)
\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2+ab}{b^2+c^2+bc}\left(đpcm\right).\)
Mình nghĩ là chứng minh như thế mới đúng.
Chúc bạn học tốt!
Cảm ơn bạn