![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A = 1 + 2 + 22 + 23 + ...... + 239
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)
= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)
= 15 (1 + 24 + ...... + 236 ) \(⋮15\)
Vậy A là bội của 15
b) B = 2 + 22 + 23 + ...... + 22004
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)
= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 22 + 23) + ....... + 22001(1 + 2 + 22 +23)
= 15 (2 + 25 + ..... + 22001) \(⋮15\)
Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)
mà (2; 15) = 1
nên B \(⋮30\)
c) Gọi 3 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5
Ta có: 2k+1 + 2k+3 + 2k+5 = 6k + 9
Ta thấy 6k chia hết cho 6 nhưng 9 ko chia hết cho 6
nên 6k + 9 ko chia hết cho 6
Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta thử nhóm lần lượt :
\(S=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{1998}\left(2+2^2\right)\)
\(=\left(2+2^2\right)\left(1+2^2+.....+2^{1998}\right)\)
\(=6\left(1+2^2+.....+2^{1998}\right)\)chia hết cho 6
Ta thấy không thể nhóm để S chia hết cho 7 vì 2 là số chẵn
S ko chia hết cho 6, ko chia hết cho 7. nếu muốn mk giải thì kb với mk và k cho mk nhé, còn ko mún thì thui. LƯỚT
Lời giải:
$B=2+2^2+2^3+....+2^{2000}$
$=2+2^2+(2^3+2^4+2^5)+(2^6+2^7+2^8)+....+(2^{1998}+2^{1999}+2^{2000})$
$=6+2^3(1+2+2^2)+2^6(1+2+2^2)+....+2^{1998}(1+2+2^2)$
$=6+(1+2+2^2)(2^3+2^6+....+2^{1998})$
$=6+7(2^3+2^6+...+2^{1998})\not\vdots 7$