K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)\(\frac{1}{3^2}< \frac{1}{2.3}\); .... ; \(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}\)

\(\Rightarrow B< 1-\frac{1}{n-1}< 1\)

=> B < 1 (đpcm)

14 tháng 12 2016

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

6 tháng 2 2017

cảm ơn nhiều nha leuleuhiha

12 tháng 2 2017

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

21 tháng 3 2017

ko hiểu

3 tháng 3 2017

Bài 1:

\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow x.\left(1+2y\right)=30\)

\(2y\) chẵn nên \(1+2y\) lẻ

\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)

\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)

3 tháng 3 2017

Bài 2:

\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)

\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)