![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}\right)^2-1^2\)
\(=x-1\)
b) Ta có: \(\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}\right)^3+1^3\)
\(=x\sqrt{x}+1\)
c) Ta có: \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(=2x-2\sqrt{x}+\sqrt{x}-1\)
\(=2x-\sqrt{x}-1\)
Bài 2: Tìm x
a) Ta có: \(\sqrt{9x^2+6x+1}=3x-2\)
\(\Leftrightarrow\left|3x+1\right|=3x-2\)(*)
Trường hợp 1: \(x\ge\frac{-1}{3}\)
(*)\(\Leftrightarrow3x+1=3x-2\)
\(\Leftrightarrow3x+1-3x+2=0\)
\(\Leftrightarrow3=0\)(vô lý)
Trường hợp 2: \(x< \frac{-1}{3}\)
(*)\(\Leftrightarrow-3x-1=3x-2\)
\(\Leftrightarrow-3x-1-3x+2=0\)
\(\Leftrightarrow-6x+1=0\)
\(\Leftrightarrow-6x=-1\)
hay \(x=\frac{1}{6}\)(loại)
Vậy: \(S=\varnothing\)
b)Trường hợp 1: \(x\ge0\)
Ta có: \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}>2\)
hay x>4(nhận)
Vậy: S={x|x>4}
![](https://rs.olm.vn/images/avt/0.png?1311)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(x^3+x^2+x=-\frac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=-\sqrt[3]{2}x\)
\(\Leftrightarrow x=-\frac{1}{\sqrt[3]{2}+1}\)
a , x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> \(x\sqrt[3]{4}\) = x + 1
<=> \(\sqrt[3]{4}x-x=1\)
<=> \(x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
b, \(x^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=4+3x\sqrt[3]{4-5}\)
\(\Leftrightarrow x^3=4-3x\)
\(\Leftrightarrow x^3+3x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\right]=0\)
Vì [....] >0
=> x-1=0
=> x=1
mk đang vội nên làm vậy thôi ha . CÓ gì ko hiểu thì nhắn tin vs mk !
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
Sửa đề: \(B=\sqrt{\left(x-2023\right)^2}+\sqrt{\left(x-1\right)^2}\)
B=|x-2023|+|x-1|
=|x-2023|+|1-x|
=>B>=|x-2023+1-x|=2022
Dấu = xảy ra khi
(x-2023)(x-1)<=0
TH1: x-2023<=0 và x-1>=0
=>x<=2023 và x>=1
=>1<=x<=2023
TH2: x-2023>=0 và x-1<=0
=>x>=2023 hoặc x<=1
=>Loại