Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để B nguyên thì ta có
5 chia hết cho \(\sqrt{x}-1\)
=> \(\sqrt{x}-1\inƯ_{\left(5\right)}=\left(1;-1;5;-5\right)\)
ta có bảng sau :
\(\sqrt{x}-1\) | - 1 | 1 | -5 | 5 |
\(\sqrt{x}\) | 0 | 2 | -4 | 6 |
\(x\) | 0 | 4 | loại | 36 |
vậy x = { 0; 4; 36 }
Tính B=\(\frac{1}{2-1}\). \(\frac{1}{3-1}\).\(\frac{1}{4-1}\)....\(\frac{1}{2010-1}\).\(\frac{1}{2011-1}\)
a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
\(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)
\(\Leftrightarrow\sqrt{x}+3=4\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy A = -1 \(\Leftrightarrow x=1\)
b) \(A=1-\frac{8}{\sqrt{x}+3}\)
\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)
\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)thì A nguyên
\(B=\frac{5}{\sqrt{x}-1}\)
Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)
Mà: Ư(5)={-1;1;-5;-5}
=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)
Ta có bảng sau:
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
Vậy x={0;4;16}
Vì B \(\varepsilon\)Z =>\(\sqrt{X-1}\)chia hết cho (viết kí hiêu chia hết thay vào đi) 5
=> \(\sqrt{X-1}\)\(\varepsilon\)Ư[5]
=>\(\sqrt{X-1}\)\(\varepsilon\)[1,-1,5,-5]...(làm tiếp nha)
Vì x thuộc Z nên x-1 thuộc Z
Để b thuộc Z thì \(\sqrt{x-1}\) phải thuộc Z và thuộc Ư(5)
Vì \(\sqrt{x-1}\ge0\) nên \(\sqrt{x-1}\in\){1;5}
<=>x-1\(\in\){1;25}
<=>x\(\in\){2;26}