\(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Có B=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{2004}}\)+\(\frac{1}{3^{2005}}\)

=>3B=3.(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))

=>3B=1+\(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

=>3B-B=(1+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\))-(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))

=>2B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-....-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)

=>2B=1-\(\frac{1}{3^{2005}}\)

=>B=(\(1-\frac{1}{3^{2005}}\)):2

\(\left(1-\frac{1}{3^{2005}}\right)< \frac{1}{2}\)=>\(\left(1-\frac{1}{3^{2005}}\right):2< \frac{1}{2}\)

=>B<\(\frac{1}{2}\)(đpcm)

5 tháng 3 2018

bạn ơi mình sửa cho bạn nè!

B=(1-\(\dfrac{1}{3^{2005}}\)) :2 = \(\dfrac{1}{2}\)-\(\dfrac{1}{\dfrac{3^{2005}}{2}}\) < \(\dfrac{1}{2}\)

3 tháng 1 2017

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}} \)
\(2B=1-\frac{1}{3^{2004}}\)
\(B=\frac{1}{2}-\frac{1}{2\cdot3^{2004}}\)
Do đó B<\(\frac{1}{2}\)
chúc thành công

20 tháng 6 2017

a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2C=1-\frac{1}{3^{99}}\)

\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)

b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{397}{3^{100}}\)

\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)

10 tháng 3 2017

B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+.....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

3B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)

3B-B=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\right)\)

2B=\(1-\frac{1}{3^{2013}}\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

10 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)

\(3B=\frac{1}{3}.3+\frac{1}{3^2}.3+\frac{1}{3^3}.3+...+\frac{1}{3^{2013}}.3\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)

\(3B-B=2B=\)

3B=    \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

B=              \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}+\frac{1}{3^{2013}}\)

2B=    1  +     0   +    0   +    0    +.......+   0           -   \(\frac{1}{3^{2013}}\)    

\(\Rightarrow2B=1-\frac{1}{3^{2013}}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2013}}\)

\(\Rightarrow B< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\).

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

20 tháng 9 2019

e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)

\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)

\(=\frac{1}{7}.\left(-2\right)\)

\(=-\frac{2}{7}.\)

Chúc bạn học tốt!

13 tháng 1 2018

Có : 

3B = 1 + 1/3 + 1/3^2 + .... + 1/3^2004

2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ..... + 1/3^2004 ) - ( 1/3 + 1/3^2 + 1/3^3 + ..... + 1/3^2005 )

                  = 1 - 1/3^2005 < 1

=> B < 1 : 2 = 1/2

=> ĐPCM

Tk mk nha

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)

\(\Rightarrow B< \frac{1}{2}\)