\(\dfrac{x.\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)}{\sqrt{x^2+8x+16}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

\(B=\frac{2+\sqrt{x}}{x-4\sqrt{x}+4}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{x+2\sqrt{x}}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+\left(6-x\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{x\sqrt{x}-8+x+2\sqrt{x}+6\sqrt{x}-12-x\sqrt{x}+2x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{3x+8\sqrt{x}-20}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\left(3x+8\sqrt{x}-20\right)}\)

\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2}{\left(\sqrt{x}-2\right)\left(3x+8\sqrt{x}-20\right)}\)

tới đây mình bí rồi cậu làm giúp mình đi

mại dzo

25 tháng 8 2018

bạn làm thiều rồi : đkxđ là \(x>4\) \(\Rightarrow\left|x-4\right|=x-4\Rightarrow\dfrac{2x\sqrt{x-4}}{\left|x-4\right|}=\dfrac{2x}{\sqrt{x-4}}\)

như bn lại thiếu 1 trường hợp nữa như mk giải ở trên là \(A=\dfrac{4x}{x-4}\) nha :) DRACULA

25 tháng 8 2018

a) điều kiện xác định : \(x>4\)

ta có :\(A=\dfrac{x\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)}{\sqrt{x^2-8x+16}}\)

\(\Leftrightarrow A=\dfrac{x\left(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\right)}{\sqrt{\left(x-4\right)^2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}A=\dfrac{4x}{x-4}\left(x\ge8\right)\\A=\dfrac{2x}{\sqrt{x-4}}\left(4< x< 8\right)\end{matrix}\right.\)

b) th1 : \(A=\dfrac{4x}{x-4}=\dfrac{4x-16+16}{x-4}=4+\dfrac{16}{x-4}\le4+\dfrac{16}{4}\left(vìx\ge8\right)\)

\(\Rightarrow\) không có GTNN

th2: \(A=\dfrac{2x}{\sqrt{x-4}}\Leftrightarrow4x^2-Ax+4A\)

phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\Leftrightarrow A^2-4.4.4A\ge0\)

\(\Leftrightarrow A^2-64A\ge0\Leftrightarrow\left[{}\begin{matrix}A\ge64\\A\le0\end{matrix}\right.\) \(\Rightarrow\) không có GTNN

c) th1 : \(A=\dfrac{4x}{x-4}=\dfrac{4x-16+16}{x-4}=4+\dfrac{16}{x-4}\)

\(\Rightarrow\left(x-4\right)\) thuộc ước của \(16\) \(\Rightarrow\left(x-4\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

\(\Rightarrow\) ..... nhớ điều kiện nha bn

th2: \(A=\dfrac{2x}{\sqrt{x-4}}\Rightarrow A^2=\dfrac{4x^2}{x-4}=\dfrac{4x^2-16x+16x}{x-4}=4x+\dfrac{16x}{x-4}\)

\(\Rightarrow...\)\(4< x< 8\Rightarrow x\in\left\{5;6;7\right\}\) thôi nên thế vào đủ điều kiện là nhận .

18 tháng 3 2021

a, Với \(x>0;x\ne4;x\ne9\)

\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)

b, Ta có : A = -2 hay 

\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)

\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)

\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)

bình phương 2 vế ta có : 

\(x=\left(2x+3\right)^2=4x^2+12x+9\)

\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)

\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)              

\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)

\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{4x}{\sqrt{x}-3}\)

a: \(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8x}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)

\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}+3}\)

\(=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}=\dfrac{4x}{\sqrt{x}-3}\)

b để P=-1 thì \(\dfrac{4x}{\sqrt{x}-3}=-1\)

\(\Leftrightarrow4x=-\sqrt{x}+3\)

\(\Leftrightarrow4x+\sqrt{x}-3=0\)

\(\Leftrightarrow4x+4\sqrt{x}-3\sqrt{x}-3=0\)

\(\Leftrightarrow4\sqrt{x}-3=0\)

hay x=9/16

c: Để P<0 thì \(\sqrt{x}-3< 0\)

hay 0<x<9

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Phần 3:

Ta đã rút gọn được \(P=\frac{4x}{\sqrt{x}-3}\)

Ta có: \(m(\sqrt{x}-3)P> x+1\) với mọi \(x>4\)

\(\Leftrightarrow m(\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}> x+1\) với mọi \(x>4\)

\(\Leftrightarrow 4mx> x+1\) với mọi \(x>4\)

\(\Leftrightarrow m> \frac{x+1}{4x}\) với mọi \(x>4\)

Điều này xảy ra khi mà \(m> max \left(\frac{x+1}{4x}\right)\)

Ta có: \(\frac{x+1}{4x}=\frac{1}{4}+\frac{1}{4x}<\frac{1}{4}+\frac{1}{4.4}\Leftrightarrow \frac{x+1}{4x}< \frac{5}{16}\) (do \(x>4\) )

\(\Rightarrow max\left(\frac{x+1}{4x}\right)< \frac{5}{16}\)

Do đó \(m\geq \frac{5}{16}\) thỏa mãn điều kiện đã cho.

 

14 tháng 3 2018

@Akai Haruma giúp em phần 3 với ạ!!

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

13 tháng 12 2020

a,b) Đk để biểu thức A xác định là x > 4

\(A=\frac{x\left(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\right)}{\sqrt{\left(x-4\right)^2}}\)

\(A=\frac{x\left(|\sqrt{x-4}+2|+|\sqrt{x-4}-2|\right)}{|x-4|}\)

\(A=\frac{x\left(\sqrt{x-4}+2+|\sqrt{x-4}-2|\right)}{x-4}\)

+) Nếu 4 < x < 8 thì \(\sqrt{x-4}-2< 0\)nên \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)

Do 4 < x < 8 nên 0 < x - 4 < 4 => A > 88

+) Nếu \(x\ge8\)thì \(\sqrt{x-4}-2\ge0\)nên :

\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}=2\sqrt{x-4}+\frac{8}{\sqrt{x-4}}\ge2\sqrt{16}=8\)

( Theo bđt Cô si )

- Dấu " = " xảy ra khi và chỉ khi \(2\sqrt{x-4}=\frac{8}{\sqrt{x-4}}\Leftrightarrow x-4=4\Leftrightarrow x=8\)

Vậy Min của A = 8 khi  x = 8

c) Xét 4 < x < 8 thì \(A=4+\frac{16}{x-4}\), ta thấy \(A\in Z\)khi và chỉ khi \(\frac{16}{x-4}\in Z\Leftrightarrow x-4\)là ước nguyên dương của 16

- Hay \(x-4\in\left\{1;2;4;16\right\}\Leftrightarrow x=\left\{5;6;8;12;20\right\}\)đối chiếu điều kiện => x = 5 hoặc x = 6

+) Xét \(x\ge8\)ta có : \(A=\frac{2x}{\sqrt{x-4}}\)

Đặt \(\sqrt{x-4}=m\Rightarrow\hept{\begin{cases}x=m^2+4\\m\ge2\end{cases}}\)khi đó ta có : \(A=\frac{2\left(m^2+4\right)}{m}=2m+\frac{8}{m}\)

\(\Rightarrow m\in\left\{2;4;8\right\}\Leftrightarrow x\in\left\{8;20;68\right\}\)

Vậy để A nhận giá trị nguyên thì \(x\in\left\{5;6;8;20;68\right\}\)