Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.5\sqrt{7}+7}+\sqrt{25-2.5\sqrt{7}+7}=5+\sqrt{7}+5-\sqrt{7}=10\)
\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{25+2.5.3\sqrt{2}+18}=5+3\sqrt{2}\) \(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=\dfrac{1}{3+\sqrt{x}}\)
\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)
\(f.\dfrac{x\sqrt{x}+64}{\sqrt{x}+4}=\dfrac{\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)}{\sqrt{x}+4}=x-4\sqrt{x}+16\)
\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
Còn 2 con cuối làm tương tự nhé ( đăng dài quá ).
\(a.\sqrt{32+10\sqrt{7}}+\sqrt{32-10\sqrt{7}}=\sqrt{25+2.\sqrt{25}.\sqrt{7}+7}+\sqrt{25-2.\sqrt{25}.\sqrt{7}+7}=\sqrt{\left(5+\sqrt{7}\right)^2}+\sqrt{\left(5-\sqrt{7}\right)^2}=5+\sqrt{7}+5-\sqrt{7}=10\)\(b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.\sqrt{8}.1}+1}}=\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}=\sqrt{13+30\sqrt{3+2\sqrt{2}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}}=\sqrt{13+30\sqrt{2}+30}=\sqrt{\sqrt{25}+2.\sqrt{25}.\sqrt{18}+18}=\sqrt{\left(5+\sqrt{18}\right)^2}=5+\sqrt{18}\)
\(c.\dfrac{3-\sqrt{x}}{9-x}=\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{9-x}{9-x}.\dfrac{1}{3+\sqrt{x}}=\dfrac{1}{3+\sqrt{x}}=\dfrac{3-\sqrt{x}}{9-x}\)\(d.\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)}=\sqrt{x}-2\)\(e.\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-1}=\sqrt{x}-2\)
\(g.\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(x\sqrt{x}-y\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{x^2+x\sqrt{xy}-y\sqrt{xy}-y^2}{x-y}=\dfrac{\sqrt{xy}\left(x-y\right)+\left(x-y\right)\left(x+y\right)}{x-y}=\dfrac{\left(x-y\right)\left(\sqrt{xy}+x+y\right)}{x-y}=x+y+\sqrt{xy}\)\(h.6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(x-3\right)^2}=6-2x-\left|x-3\right|=6-2x-3+x=3-x\)
\(i.\sqrt{x+2+2\sqrt{x+1}}=\sqrt{x+1+2\sqrt{x+1}+1}=\sqrt{\left(\sqrt{x+1}+1\right)^2}=\sqrt{x+1}+1\)
a: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
c: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>\(-10\sqrt{x}+4=\sqrt{x}+3\)
=>x=1/121
d: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}< =0\)
=>A<=2/3
Lời giải:
Đặt \(\sqrt{x}=a(a\ge 0)\)
Khi đó: \(P=\frac{4a}{3(a^2-a+1)}\)
Để \(P=\frac{8}{9}\Rightarrow \frac{4a}{3(a^2-a+1)}=\frac{8}{9}\)
\(\Rightarrow \frac{a}{a^2-a+1}=\frac{2}{3}\Rightarrow 3a=2(a^2-a+1)\)
\(\Leftrightarrow 2a^2-5a+2=0\Leftrightarrow (a-2)(2a-1)=0\)
\(\Rightarrow \left[\begin{matrix} a-2=0\\ 2a-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=2=\sqrt{x}\\ a=\frac{1}{2}=\sqrt{x}\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x=4\\ x=\frac{1}{4}\end{matrix}\right.\) (t/m)
b)
Vì \(a\geq 0; a^2-a+1=(a-\frac{1}{2})^2+\frac{3}{4}>0\)
Do đó: \(P=\frac{4}{3}.\frac{a}{a^2-a+1}\geq \frac{4}{3}.0=0\)
Vậy \(P_{\min}=0\Leftrightarrow a=0\Leftrightarrow x=0\)
-------
Áp dụng BĐT Cô-si: \(a^2+1\geq 2a\Rightarrow a^2-a+1\geq 2a-a=a\)
\(\Rightarrow \frac{a}{a^2-a+1}\leq \frac{a}{a}=1\Rightarrow P=\frac{4}{3}.\frac{a}{a^2-a+1}\leq \frac{4}{3}.1=\frac{4}{3}\)
Vậy \(P_{\max}=\frac{4}{3}\Leftrightarrow a=1\Leftrightarrow x=1\)
Bài 2:
Đặt \(P=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{12-4\sqrt{5}}\)
Có:
\(4+\sqrt{15}=\frac{8+2\sqrt{15}}{2}=\frac{5+3+2\sqrt{3.5}}{2}=\frac{(\sqrt{3}+\sqrt{5})^2}{2}\)
\(\Rightarrow \sqrt{4+\sqrt{15}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}\)
Tương tự: \(\sqrt{4-\sqrt{15}}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(12-4\sqrt{5}=12-2\sqrt{20}=10+2-2\sqrt{10.2}=(\sqrt{10}-\sqrt{2})^2\)
\(\Rightarrow \sqrt{12-4\sqrt{5}}=\sqrt{10}-\sqrt{2}\)
Vậy \(P=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{2}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-(\sqrt{10}-\sqrt{2})\)
\(=\sqrt{2}\)
a/ \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}=\dfrac{x+3+2\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)}{x-9}=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{x-9}=\dfrac{x-\sqrt{x}-6}{x-9}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-3\left(\sqrt{x}+2\right)}{x-9}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
b/ \(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{3\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}\)
P/s: câu b đề sai phải không bạn, mk nghĩ ngoài dấu ngoặc là phép chia thì đúng hơn
Bài 2:
a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)
b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)
=>P<1
1) Khi \(x=4\):
\(A=\dfrac{\sqrt{4}+1}{\sqrt{4}+2}=\dfrac{3}{4}\).
2) \(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{x-1}\)
\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{\sqrt{x}+1}\)
3) \(P=2AB+\sqrt{x}=2.\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\dfrac{2}{\sqrt{x}+1}+\sqrt{x}=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}\)
\(=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}+2-2\ge2\sqrt{\dfrac{4}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)}-2\)
\(=4-2=2\)
Dấu = xảy ra khi \(\dfrac{4}{\sqrt{x}+2}=\sqrt{x}+2\Leftrightarrow x=0\) (thỏa mãn).
1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)
Làm nốt nè :3
\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-2}{2x}>0\)
\(\Leftrightarrow x-2>0\left(do:x>0\right)\)
\(\Leftrightarrow x>2\)
\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)
\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)
Kết hợp với DKXĐ : \(0< a< 1\)
\(P=B:A\)
\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}:\dfrac{\sqrt{x}+3}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(P=\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{1}{3}\Leftrightarrow3\sqrt{x}-6=\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}=9\Leftrightarrow\sqrt{x}=4,5\Leftrightarrow x=\dfrac{81}{4}\)
b. \(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-5}{\sqrt{x}+3}=1-\dfrac{5}{\sqrt{x}+3}\)
Ta có: \(-\dfrac{5}{\sqrt{x}+3}\ge-\dfrac{5}{\sqrt{0}+3}=-\dfrac{5}{3}\)
\(\Rightarrow1-\dfrac{5}{\sqrt{x}+3}\ge1-\dfrac{5}{3}=-\dfrac{2}{3}\)
Suy ra: \(P\ge-\dfrac{2}{3}\) khi \(x=0\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
B nhỏ nhất khi \(\dfrac{3}{\sqrt{x}+2}\) lớn nhất \(\Rightarrow\sqrt{x}+2\) nhỏ nhất \(\Rightarrow\sqrt{x}\) nhỏ nhất
Mà \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}_{min}=0\)
\(\Rightarrow B_{min}=-\dfrac{1}{2}\) khi \(x=0\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
\(\sqrt{x}+2>=2\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{3}{\sqrt{x}+2}< =\dfrac{3}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(-\dfrac{3}{\sqrt{x}+2}>=-\dfrac{3}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(-\dfrac{3}{\sqrt{x}+2}+1>=-\dfrac{3}{2}+1=-\dfrac{1}{2}\forall x\) thỏa mãn ĐKXĐ
=>\(B>=-\dfrac{1}{2}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0