Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
B=3+32+32+34+...+37+38+39+310
=3.(1+3+32+33+...+36+37+38+39)
=3.[(1+3)+(32+33)+...+(38+39)]
=3.[1(1+3)+32(1+3)+..+38(1+3)]
=3.[1.4+32.4+...+38.4]
=3.[4.(1+32+....+38)]
vì .[4.(1+32+....+38)] chia hết cho 4 nên 3.[4.(1+32+....+38)] chia hết cho 4
=> B chia hết cho 4
=>dpcm
b/
B=3+32+33+34+...+39+310
=(3+32)+(33+34)+....+(39+310)
=1.(3+32)+32+(3+32)+...+38(3+32)
=1.12+32.12+...+38.12
=12(1+32+...+38) chia hết cho 12
=>dpcm
c/
B=3+32+33+...+38+39+310
=(3+32+33)+...+(38+39+310)
=1(3+32+33)+..+37(3+32+33)
=1.39+..+37.39
=39(1+...+37)
=13.3.(1+..+37) chia hết cho 13
=>dpcm
a) Ta có: B=3+3^2+3^3+...........+3^10
=(3+3^2)+(3^3+3^4)+........+(3^9+3^10)
=(3.1+3.3)+(3^3.1+3^3.3)+.........+(3^9.1+3^9.3)
=3(1+3)+3^3.(1+3)+...........+3^9.(1+3)
=3.4+3^3.4+........+3^9.4
=4(3.3^3+.....+3^9) chia hết cho 4 suy ra B chia hết cho 4
câu b), câu c) tương tự, bn ghép thành 1 cặp chứa 2 hoặc 3 số là ra
Dãy trên có 2010 ( 2010 chia hết cho 3 ) lũy thừa nên có thể chia thành các cặp, mỗi cặp 3 lũy thừa
Có :
B = \(\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
B = \(3.13+...+3^{2008}.13\)
B = \(13.\left(3+...+3^{2008}\right)\)
=> B chia hết cho 13
Có :
B = \(3+3^2+3^3+3^4+...+3^{2010}\)
B = \(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
B = \(3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
B = \(4.\left(3+3^3+...+3^{2009}\right)\)
=> B chia hết cho 4
B=(3+32+33)+(34+35+36)+...+(358+359+360)
=3(1+3+9)+34(1+3+9)+...+358(1+3+9)
=13.3+13.34+...+13.358
=13.(3+34+...+358) luôn chia hết cho 13
vậy B chia hết cho 13
B=(3+32)+(33+34)+...+(359+360)
B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)
4(4+33+34+...+359)
suy ra:4(4+33+34+...+359)chia hết cho 4
a) Ta có: B=3(1+3)+33(1+3)+....+359(1+3)
=4(3+33+...+359)
=>B chia hết cho 4
b)Ta có:B=3(1+3+32)+34(1+3+32)+...+358(1+3+32)
=13(3+34+...+358)
=>B chia hết cho 13 (đpcm)
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
\(B=3+3^2+3^3+...+3^{120}.\)
\(a,=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
\(b,=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
\(c,=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)⋮13\)