Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 3 + 32 + 33 + 34 + ... + 32010
Ta có : Số số hạng của dãy số B là khoảng cách từ 1 ---> 2010 mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số B là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số hạng )
Vậy ta có số nhóm là :
2010 : 2 = 1005 ( nhóm )
B = ( 3 + 32 ) + ( 33 + 34 ) +... + ( 32009 + 22010 )
B = ( 3 + 32 ) + 32 ( 3 + 32 ) + ... + 32008 ( 3 + 32 )
B = 1 . 12 + 32 . 12 + ... + 32008 . 12
B = ( 1 + 32 + ... + 32008 ) . 12
Mà : 12 = 3 . 4 và 1 + 32 + ... + 32008 \(\in\) N
=> B chia hết cho 4
Câu sau tương tự
Tổng B có : ( 2010-1 ) : 1 + 1 = 2010 ( số hạng )
+) CM : \(B⋮4\)
\(B=3^1+3^2+3^3+...+3^{2010}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\) (Có 2010:2=1005 nhóm)
\(B=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{2009}.4\)
\(B=4.\left(3+3^3+...+3^{2009}\right)⋮4\)(ĐPCM)
+) CM :\(B⋮13\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)(Có 2010:3=670 nhóm)
\(B=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)
\(B=3.13+3^4.13+...+3^{2008}.13\)
\(B=13.\left(3+3^4+...+3^{2008}\right)⋮13\)(ĐPCM)
chia hết 4
bn ghép 1 cặp 2 số thứ thự nha
3^1 + 3^2 là 1 cặp
3^3 + 3^4 là 1 cặp tiếp theo
....
3^2009 + 3^2010 là cặp cuối
thì lấy thừa số chung trong mỗi cặp thì lòi ra số 4 trong mỗi cặp
=> chia hết 4
tương tự vs 13
thì bn ghép thứ tự 1 nhóm 3 số
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30⇔32S−S=32022−30
⇔9S−S=32022−1⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
các pạn ơi mình cần gấp lắm lun
giải hộ mk với
Ta có:
\(B=3+3^2+3^3+...+3^{2020}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(B=4\cdot\left(3+3^3+...+3^{2019}\right)\) chia hết cho 4
=> đpcm