Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1+2+...+2^{2011}\)
\(=2^0+2+...+2^{2010}+2^{2011}\)
\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)
\(=2^0\cdot3+...+2^{2010}\cdot3\)
\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)
Các câu còn lại tương tự, dài quá
a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.
Ta có :
A = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 + 22011 )
=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )
=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3
- Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )
b,
Ta có :
B = 1 + 7 +...+ 7101
=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )
=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )
=> B = 50 + 72.50 +...+799.50
=> B = 50.( 1 + 72 +...+ 799 ) => B chia hết cho 50
Dưới tương tự...
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
a) \(B=1+3+3^2+3^3+....+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+2^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\)
\(=40\left(1+3^4+....+3^{96}\right)\)\(⋮\)\(40\)
b) \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=40.3^4\)
AI MÀ GIẢI!
CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
A = 2 + 22 + 23 +24 + ... + 220
*Chia hết cho 15*
A = 2 + 22 + 23 +24 + ... + 220
A = ( 2 + 22 + 23 + 24) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
A = 30 + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
A = 30 + ( 25 . 1 + 25 . 2 + 25 . 22 + 25 . 23 ) + ... + ( 217 . 1 + 217 . 2 + 217 . 22 + 217 . 23 )
A = 30 + 24 ( 2 + 22 + 23 + 24) + ... + 216 ( 2 + 22 + 23 + 24)
A = 30 + 24 . 30 + ... + 216 . 30
A = 30 ( 24 + ... + 216 )
Vậy A \(⋮\)15
Vì số nào chia hết cho 15 sẽ chia hết cho 3 => A \(⋮\)3
Vậy A \(⋮\)3
Học toots!!!
Chia hết cho 4 :
B = 30 + 3 + 32 + ... + 399
B = ( 30 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
B = 30 ( 1 + 3 ) + 32 ( 1 + 3 ) + ... + 398 ( 1 + 3 )
B = 30 . 4 + 32 . 4 + ... + 398 . 4
B = 4 . ( 30 + 32 + ... + 398 ) ⋮ 4 ( đpcm )
Chia hết cho 10; 28 tương tự
\(B=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=\left(1+3\right)+3^2.\left(1+3\right)+....+3^{98}.\left(1+3\right)\)
\(=\left(1+3\right).\left(1+3^2+...+3^{98}\right)\)
\(=4.\left(1+3^2+...+3^{98}\right)⋮4\)
Vậy B chia hết cho 4
\(B=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+....+3^{97}.\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(1+3^3+....+3^{97}\right)\)
\(=10.\left(1+3^3+...+3^{97}\right)⋮10\)
Vậy B chia hết cho 10
\(B=\left(1+3^3\right)+\left(3+3^4\right)+\left(3^2+3^5\right)+....+\left(3^{96}+3^{99}\right)\)
\(=\left(1+3^3\right)+3.\left(1+3^3\right)+3^2.\left(1+3^3\right)+....+3^{96}.\left(1+3^3\right)\)
\(=\left(1+3^3\right).\left(1+3+3^2+...+3^{96}\right)\)
\(=28.\left(1+3+3^2+....+3^{96}\right)⋮28\)
Vậy B chia hết cho 28