Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1+11+112+...+1199
=(1+11+112+113+114)+(115+116+117+118+119)+...+(1195+1196+1197+1198+1199)
=1(1+11+112+113+114)+115(1+11+112+113+114)+...+1195(1+11+112++113+114)
=1.16105+115.16105+...+1195.16105 chia hết cho 5
Vậy B chia hết cho 5.
Học tốt!
Ta có : B =1+11^1+11^2+11^3+...+11^99 =>11B=11+11^2+11^3+11^4+...+11^100 =>10B=(11+11^2+11^3+11^4+...+11^100)-(1+11^1+11^2+11^3+...+11^99) =>10B=11^100-1 mà 11 mũ 100 có tận cùng =1 nên 11 mũ 100 -1 có tận cùng =0 nên chia hết cho 5. =>B =(11^100-1):10 cũng có tận cùng bằng 0 nên cũng chia hết cho 5. Vậy B chia hết cho 5. (lưu ý: ^ là mũ)
\(B=1+11^1+11^2+11^3+...+11^{99}\\ 11B=11+11^2+...+11^{100}\\ 11B-B=\left(11+11^2+...+11^{100}\right)-\left(1+11^1+11^2+...+11^{99}\right)\\ 10B=11^{100}-1\\=>B=\frac{11^{100}-1}{10} \)
Sau đó giải thích: ta có 11^100 có chữ số tận cùng là 1=> 11^100-1 có chữ số tận cùng là 0 => (11^100-1)/10 chia hết cho 5. Kết luận
Dễ thấy các số 1, 111, 112, ..., 1199 đều có chữ số tận cùng là 1. Mà B có 100 số hạng nên có chữ số tận cùng là 0. Do đó B chia hết cho 5.