Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(A(x)=x^2-(3m+3)x+m^2\)
\(\Rightarrow A(-1)=1+(3m+3)+m^2=m^2+3m+4\)
\(B(x)=x^3+(5m-7)x+m^2\)
\(\Rightarrow B(2)=8+2(5m-7)+m^2=m^2+10m-6\)
Do đó để \(A(-1)=B(2)\Leftrightarrow m^2+3m+4=m^2+10m-6\)
\(\Leftrightarrow 3m+4=10m-6\Leftrightarrow 10=7m\Leftrightarrow m=\frac{10}{7}\)
=> A(-1) = (-1)2 - (3m + 3).(-1) + m2 = 1 + 3m + 3 + m2 = 3m + 4 + m2
=> B(2) = 23 + (5m - 7).2 + m2 = 8 + 10m - 14 + m2 = -6 + 10m + m2
Để A(-1) = B(2)
=> A(-1) - B(2) = 3m + 4 + m2 + 6 - 10m - m2 = 0
=> -7m + 10 = 0
=> -7m = -10
=> m = 10/7
Vậy ....
\(f\left(-1\right)=\left(-1\right)^2-\left(3m+3\right)\cdot\left(-1\right)\)
\(=1+\left(3m+3\right)\)\(=1+3m+3=4+3m\)
\(g\left(2\right)=2^3+\left(5m-7\right)\)
\(=8+5m-7=1+5m\)
MÀ \(f\left(-1\right)=g\left(2\right)\)\(\Rightarrow4+3m=1+5m\)
\(\Rightarrow4-1=5m-3m\)
\(\Rightarrow2m=3\)
\(\Rightarrow m=\frac{3}{2}\)
Ta có :
\(f\left(1\right)=1-m+1+3m-2=2m\)
\(g\left(2\right)=4-4\left(m+1\right)-5m+1=4-4m-4-5m+1=-9m+1\)
mà \(f\left(1\right)=g\left(2\right)\)hay \(2m=-9m+1\Leftrightarrow11m=1\Leftrightarrow m=\frac{1}{11}\)
Trả lời:
f(1)=g(2)
<=> 12-(m-1).1 +3m -2= 22-2(m+1).2-5m+1
<=>1-m+1+3m=4-4m-4-5m+1
<=> 2m+2=-9m+1
<=> 11m=1
=> m=1/11
a) Đa thức \(f\left(x\right)\)có nghiệm là \(-1\)nên \(f\left(-1\right)=0\)
\(\Rightarrow\left(-1\right)^2-\left(m-1\right)\left(-1\right)+3m-2=0\)
\(\Leftrightarrow1+m-1+3m-2=0\)
\(\Leftrightarrow m=\frac{1}{2}\).
b) c) Làm tương tự a).
d) \(f\left(1\right)=g\left(2\right)\)
\(\Rightarrow1^2-\left(m-1\right).1+3m-2=2^2+\left(m+1\right).2-5m+1\)
\(\Leftrightarrow1-m+1+3m-2=4+2m+2-5m+1\)
\(\Leftrightarrow5m=7\)
\(\Leftrightarrow m=\frac{7}{5}\)
e) Làm tương tự d).
Ta có \(P\left(-1\right)=8\left(-1\right)^2-m^2\left(-1\right)-5m=8+m^2-5m\)
\(Q\left(-2\right)=\frac{3m}{2}-\left(-2\right)^3=\frac{3m}{2}+8\)
\(8+m^2-5m=\frac{3m}{2}+8\)
\(\Rightarrow m^2-5m=\frac{3m}{2}\)
\(\Rightarrow m^2=\frac{3m}{2}+5m=\frac{3m}{2}+\frac{10m}{2}=\frac{13m}{2}\)
\(\Rightarrow2m^2=13m\Rightarrow\frac{2m^2}{m}=\frac{13m}{m}\)
\(\Rightarrow2m=13\Rightarrow m=\frac{13}{2}\)
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)