Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Để \(A=x\left(x-2\right)\ge0\)
\(\Rightarrow x\left(x-2\right)\ge0\)
\(\Rightarrow x-2\ge0\)
\(\Rightarrow x>2\)
Để \(A=x\left(x-2\right)< 0\)
\(\Rightarrow x\left(x-2\right)< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
\(\Rightarrow x=1\)
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
giờ đã gần sáng rồi mà nỗi nhớ anh vẫn còn ngổn ngang rằng:
anh ơi đừng rong chơi đừng quan tâm những điều buôn lơi mà quên trong đêm vẫn có người đợi anh
anh ơi ngoài kia bao điều mặn đắng anh ơi đừng lăn tăn về nhà thôi trời đã gần sáng rồi
em đợi anh nhé em chờ anh nhé
vui thôi đừng vui quá còn về với em
kim đồng hồ vẫn từng nhịp tok
mà sao, anh chưa về?
anh đừng cứ thế , anh đừng mãi thế anh ơi
đừng làm trái tim này vỡ đôi
anh đừng cứ mãi nói lời xin lỗi rồi thôi
giờ này anh đâu rồi ?
cho hỏi bây giờ là mấy giờ rồi vậy cà ?
anh taxi à anh taxi ơi
mới đi ra ngoài có 30p
mà đã liên tục phải hát xì hơi
em đăng trạng thái em up story
em bảo là nhớ Ricky OTĐ
nhà hàng chưa kịp đem ra món khai vị thì em đã kêu anh là anh về nhà đi ( là sao )
em đợi anh nhé em chờ anh nhé
vui thôi đừng vui quá còn về với em
kim đồng hồ vẫn từng nhịp tok
mà sao, sao anh chưa về ? Em chờ anh nhé, I love you
a, Để A = 0 thì x = 0 hoặc \(\left(x-\frac{1}{2}\right)\)= 0 => x = 0 hoặc x = 0,5
b, Để A > 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)> 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)< 0
=> x > 0 và x > 0,5 hoặc x < 0 và x < 0,5
c,a, Để A < 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)< 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)> 0 mà x > \(\left(x-\frac{1}{2}\right)\) => x > 0 và x < 0,5
a) Xét A = 0
\(\Leftrightarrow\frac{X-2}{3X+2}=0\)
\(\Leftrightarrow X-2=0\)
\(\Leftrightarrow X=2\)
b) Xét A < 0
\(\Leftrightarrow\frac{X-2}{3X+2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}X-2< 0\\3X+2< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}X< 1\\X< -1\end{cases}}\)
\(\text{Thần đồng tính nhẩm nà tui ADMIRE lém!}\)
\(\text{Ta có:}\)\(\frac{a+17}{a}=\frac{a}{a}+\frac{17}{a}\)
\(=1+\frac{17}{a}\)
\(\text{Để x nguyên thì a/17 phải nguyên}\)
\(\Rightarrow a\inƯ\left(17\right)=\left\{1;17;-1;-17\right\}\)
A= căn x-3+4/ căn x-3
A=1+4 / căn x-3
để A thuộc Z thì 4 chia hết cho x-3
hay x-3 là ước của 4
x-3 thuộc (1;-1;2;-2;4;-4)
x thuộc (4;2;5;1;7;-1)
vậy ....
a.Để x<0 thì a-5<0 suy ra: a<5
b.Để x>0 thì a-5>0 suy ra: a>5
Ta có : \(\left|x+\frac{1}{2}\right|+\left|y-3\right|=0\)
Mà : \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
\(\left|y-3\right|\ge0\forall x\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
câu a bn làm như trên, câu b:
I x-1/2 I + I y-2I lớn hơn hoặc bằng 0
=> I x- 1/2I lớn hơn hoặc = 0; I y-2I lớn hơn hoặc = 0
=> x > hoặc = 1/2 và y lớn hơn hoặc = 2
A>=0 khi x và x-2 cùng dấu (tức là cùng <0 hoặc cùng >=0)
A<0 khi x và x-2 khác dấu (tức là nếu 1 trong 2 cái là âm thì cái còn lại sẽ là dương)
theo lí thuyết mà giải nha