Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
ta có tổng của hai số nghich dao luon lon hoac bang 2
lấyS1+S2+S3=
̣̣b/a*x+c/a*z + a/b*x+c/b*y + a/c*z+b/c*y=x*[a/b+b/a]+y*[c/b+b/c]+z*[a/c+c/a] lớn hơn hoặc bằng 2*[x+y+z]=2*1008=2016
vậy S1+S2+S3 lớn hơn hoặc bằng 2016
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a-x}{b-y}=\frac{a}{b}\)\(=\frac{a-x-a}{b-y-b}=\frac{-x}{-y}=\frac{x}{y}\)
=> \(\frac{a}{b}=\frac{x}{y}\)( điều phải chứng minh)
a) Mình k chép lại đề nữa nha!
Vì |x+45-40| luôn lớn hơn hoặc bằng 0 với mọi x.
|y+10-11| luôn lớn hơn hoặc bằng 0 với mọi y
Mà |x+45-40|+|y+10-11| nhỏ hơn hoặc bằng 0
Nên |x+45-40| =0 => x=-5
Và |y+10-11|=0 => y=1
Vậy x= -5; y =1
Chúc bạn học tốt nha!
b) 10000-|x+5|
Vì |x+ 5| luôn lớn hơn hoặc bằng 0 với mọi x
=> 10000-|x+5| luôn nhỏ hơn hoặc bằng 10000 với mọi x
Dấu = xảy ra <=>: x+5 = 0
<=> x=-5
Vậy GTLN của biểu thức trên là 10000 tại x=-5.
Cau 1
\(\hept{\begin{cases}ab=24\\a+b=-10\end{cases}\Leftrightarrow\hept{\begin{cases}a=-10-b\\b\left(-10-b\right)=24\end{cases}}}\)
<=> \(\hept{\begin{cases}a=-10-b\\-b^2-10b-24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}a=-10-b\\b=-4\end{cases}}\\\hept{\begin{cases}a=-10-b\\b=-6\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\hept{\begin{cases}a=-6\\b=-4\end{cases}}\\\hept{\begin{cases}a=-4\\b=-6\end{cases}}\end{cases}}}\)
Vay {a;b} ={-4;-6}, {-6;-4}
Cau 2
Ap dung tinh chat sau
\(\hept{\begin{cases}a⋮m\\b⋮m\end{cases}\Rightarrow\left(a-b\right)⋮m}\)
nen \(\hept{\begin{cases}a+b+c⋮m\\a⋮m\\b⋮m\end{cases}\Rightarrow\left(a+b+c-a-b\right)⋮m\Leftrightarrow c⋮m}\)
Theo đầu bài ta có:
\(\hept{\begin{cases}A=x^2yz=xyz\cdot x\\B=xy^2z=xyz\cdot y\\C=xyz^2=xyz\cdot z\end{cases}}\)
\(\Rightarrow A+B+C=xyz\cdot x+xyz\cdot y+xyz\cdot z\)
\(\Rightarrow A+B+C=xyz\left(x+y+z\right)\)
Mà \(x+y+z=1\Rightarrow A+B+C=xyz\) ( đpcm )
Ta có
\(\hept{\begin{cases}A=x^2yz=xyz.x\\B=xy^2z=xyz.y\\C=xyz^2=xyz.z\end{cases}}\)
\(\Rightarrow A+B+C=xyz.x+xyz.y+xyz.z\)
\(\Rightarrow A+B+C=xyz.\left(x+y+z\right)\)
Mà \(x+y+z=1\Rightarrow A+B+C=xyz\)