\(A=\sqrt{5}+\sqrt{6}.\) Khẳng định nào sau đây là đúng

- khẳng định 1 : 4 &l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

a) \(x^2y>0\) . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2 dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |\(x^2y>0\)

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

d)tương tự như các bài trên

e) tương tự các bài trên. Mình lười làm òi!

14 tháng 11 2018

a) x2y>0x2y>0 . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |x2y>0x2y>0

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)} khoanh vào khẳng định đúng  - khẳng định 1 : có 3 phần tử của A là bội của 5 - khẳng định 2 : có 3 phần tử của A là bội của 3 - khẳng định 3 : có 2 phần tử của A là bội của 3 - khẳng định 4 : có 2 phần tử của A là bội của 5 bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt...
Đọc tiếp

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)}

khoanh vào khẳng định đúng 

- khẳng định 1 : có 3 phần tử của A là bội của 5

- khẳng định 2 : có 3 phần tử của A là bội của 3

- khẳng định 3 : có 2 phần tử của A là bội của 3

- khẳng định 4 : có 2 phần tử của A là bội của 5

bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\)

cho \(x\) là số thực thỏa mãn \(\left[x\right]\div2=3\div6\), khoanh vào khẳng định đúng

- khẳng định 1 : (x - 1) × (x - 3) ≥ 0

- khẳng định 2 : (x - 1) × (x - 3) > 0

- khẳng định 3 : (x - 1) × (x - 3) ≤ 0

- khẳng định 4 : (x - 1) × (x - 3) < 0

bài 3 : cho tam giác ABC có \(\widehat{A}=62^o,\widehat{B}=52^o,AD\) là tia phân giác góc A, D thuộc BC. Tính số đo của góc ADC

bài 4 : cho 2 số \(x,y\) thỏa mãn \(x\div15=y\div6\) và \(xy=10\), khoanh vào khẳng định đúng

- khẳng định 1 : y2 < 30 < x2

- khẳng định 2 : x2 < y2 < 30

- khẳng định 3 : y2 < x2 < 30

- khẳng định 4 : x2 < 30 < y2

bài 5 : cho tam giác ABC, số đo góc A là 44o. Kẻ Bx, Cy lần lượt là tia đối của tia BA, CA. Tia phân giác của các góc xBC và BCy cắt nhau tại H. Tính số đo của góc BHC

bài 6 : cho tam giác ABC có \(\widehat{A}=60^o,\widehat{B}=40^o,D\) là điểm nằm trên cạnh BC sao cho \(\widehat{DAC}=2\times\widehat{BAD}\). Tia phân giác góc B cắt AD tại M. Tính số đo góc AMB

bài 7 : căn bậc ba số thực \(a\) là số thực \(x\) sao cho x3 = a. Kí hiệu \(x=\sqrt[3]{a}\). Gia trị của \(x\) thỏa mãn \(\sqrt[3]{27x+27}+\sqrt[3]{8x+8}=5\) là :

bài 8 : cho \(x,y\) là các số thực khác 0 thỏa mãn \(x\div2=y\div7.\) Khoanh vào đẳng thức đúng nhất

- đẳng thức 1 : \(\left(x-y\right)\div\left(x+y\right)=5\div\left(-9\right)\)

- đẳng thức 2 : \(\left(x-y\right)\div\left(x+y\right)=5\div9\)

- đẳng thức 3 : \(\left(x-y\right)\div\left(x+y\right)=\left(-9\right)\div5\)

- đẳng thức 4 : \(\left(x-y\right)\div\left(x+y\right)=9\div5\)

0
7 tháng 3 2016

Cũng không khó đâu bạn à. Ta tháy a4 lớn hơn hoặc bằng 0; c2 lớn hơn hoặc bằng 0 => 2a4c2 lớn hơn hoặc bằng 0. Mà 2a2c và 2a4c2 cùng dấu => 2a2c lớn hơn hoặc bằng 0. Lại có a2 lớn hơn hoặc bằng 0 => 2a2c lớn hơn hoặc bằng 0 xảy ra khi và chỉ khi c lớn hơn hoặc bằng 0

14 tháng 6 2017

b1 

a sai

b sai

c sai

d sai

Ta có: BC > AB > AC ( vì 8cm > 6cm >5cm)

=> \(\widehat{A}>\widehat{C}>\widehat{B}\)(Quan hệ giữa góc và cạch đối diện trong tam giác)

=> D là đáp án đúng

=> chọn B

nhầm nhé bạn mik viết nhầm

=> chọn D