\(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)CMR M=\(\frac{64}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\)  + \(\sqrt[3]{2+\sqrt{3}}\)

Suy ra a^3 = 3a +4  => (a^2 -3)a=4  

<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3  <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4   

mà 4 nguyên suy ra đpcm

2 tháng 8 2019

Ta có \(a=3\sqrt{2-\sqrt{3}}+\sqrt{3}^32_{\sqrt{3}}\)

Suy ra ta được 3= 3a + 4 => (a ngũ 2 - 3)a =4

Vậy kết quả khi tính đ là

=> (4 trên a2 - 3) trên 3 =a ngũ 3 <=> 64 trên a 2 - a3 - 3a =4

14 tháng 9 2019

Chú ý tới đẳng thức : \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)

\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)

\(\Leftrightarrow a^3=2-\sqrt{3}+2+\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\cdot a\)

\(\Leftrightarrow a^3=4+3\sqrt[3]{4-3}\cdot a\)

\(\Leftrightarrow a^3=4+3a\)

\(\Leftrightarrow a^3-3a=4\)

Khi đó: \(\frac{64}{\left(a^3-3a\right)^3}-3=\frac{64}{4^3}-3=1-3=-2\)

Ta có đpcm.

p/s: Mình nghĩ đề sai và sửa luôn rồi, có gì bạn ib lại.

14 tháng 9 2019

Lập phương lên bạn!

NV
24 tháng 10 2019

\(P=\frac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(P\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}-6=4\)

\(P_{min}=4\) khi \(\sqrt{x}+3=5\Rightarrow x=4\)

\(a^3=4+3a.\sqrt[3]{2^2-3}=4+3a\)

\(\Rightarrow a^3-3a=4\)

\(\Leftrightarrow a\left(a^2-3\right)=4\Rightarrow a^2-3=\frac{4}{a}\)

\(\Rightarrow\frac{64}{\left(a^2-3\right)^2}-3a=\frac{64}{\left(\frac{4}{a}\right)^3}-3a=a^3-3a=4\)