\(^3+3n^2+2n\) 

tìm giá trị nguyên dương nhỏ hơn 10 để Achia hết cho15

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(n^3+3n^2+2n\)

\(=n^3+n^2+2n^2+2n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Ta thấy : 

\(n;n+1;n+2\)là 3 số tự nhiên liên tiếp 

=> \(n\left(n+1\right)\left(n+2\right)\)chia hết cho 15

20 tháng 6 2016

Ta phải tìm n để A chia hết cho 3 và 5

A = n3 + 3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2 . (n + 1) + 2n . (n + 1)

A = (n + 1) . (n2 + 2n)

A = (n + 1) . n . (n + 2)

A = n . (n + 1) . (n + 2)

Vì n . (n + 1) . (n + 2) là tích 3 số tự nhiên liên tiếp nên n . (n + 1) . (n + 2) chia hết cho 3 

=> A chia hết cho 3

Do A vốn dĩ đã chia hết cho 3 nên ta chỉ phải tìm n để A chia hết cho 5

=> n . (n + 1) . (n + 2) chia hết cho 5

=> n hoặc n + 1 hoặc n + 2 chia hết cho 5

Mà n < 10 => n < n + 1 < n + 2 < 12

Ta tìm được các giá trị sau: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy n thuộc { 3 ; 4 : 5 ; 8 ; 9}

20 tháng 6 2016

a) ta phân tích A=n.(n+1).(n+2) vì 3 số tự nhiên liên tiếp luôn có tích chia hết cho 3

20 tháng 6 2016

a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)

\(=n^3+n^2+2n^2+2n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n^2+2n\right)\left(n+1\right)\)

\(=n\left(n+2\right)\left(n+1\right)\)

Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3

=>n3+3n2+2n chia hết cho 3

b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5

Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)

A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5

+)Nếu n chia hết cho 5

=>n\(\in\){0;5}

+)Nếu n+1 chia hết cho 5

=>n\(\in\){4;9}

+)Nếu n+2 chia hết cho 5

=>n\(\in\){3;8}

Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15

Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.

16 tháng 7 2015

Phân tích A thành nhân tử được

\(A=n\left(n+1\right)\left(n+2\right)\)

Từ đây việc chứng minh còn lại là khá dễ.

18 tháng 9 2019

và dược 1 dis

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

15 tháng 2 2020

a) Để \(\frac{3}{n+1}\)có giá trị là 1 số tự nhiên thì 3\(⋮\)n+1

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

+) n+1=-1\(\Rightarrow\)n=-2  (không thỏa mãn)

+) n+1=1\(\Rightarrow\)n=2  (thỏa mãn)

+) n+1=-2\(\Rightarrow\)n=-3  (không thỏa mãn)

+) n+1=2\(\Rightarrow\)n=3  (thỏa mãn)

Vậy \(n\in\left\{2;3\right\}\)

b) Để \(\frac{13}{3n+1}\)có giá trị là 1 số tự nhiên thì 13\(⋮\)3n+1

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

...

c) Để \(\frac{10}{2n+1}\)có giá trị là 1 số tự nhiên thì 10\(⋮\)2n+1

\(\Rightarrow2n+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

...