K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(a_{n+1}=1+2+3+...+n+n+1\)

b)\(a_n+a_{n+1}=1+2+...+n+1+2+...+n+\left(n+1\right)\)

Ta có:\(a_n+a_{n+1}\) có 2n+1 số hạng

=>\(a_n+a_{n+1}=\dfrac{\left(n+1\right)\left(2n\right)}{2}+n+1\)

=\(\dfrac{2n^2+2n}{2}+n+1=n^2+n+n+1=\left(n+1\right)^2\)

Vậy \(a_n+a_{n+1}\) là số cính phương(đpcm)

23 tháng 1 2017

an = 1 + 2 + 3 + ... + n =\(\frac{n\left(n+1\right)}{2}\)

an + 1 = 1 + 2 + 3 + ... + n + (n + 1) =\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)

an + an + 1 =\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)là số chính phương (đpcm)

12 tháng 7 2017

a) Do \(1010\le n\le2016\)nên:

                \(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)

b) Ta có:

\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)

\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)

\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)

Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)

\(\Rightarrow dpcm\)

13 tháng 6 2016

Áp dụng BĐT Cosy Schwarz : \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{b_1+b_2+b_3+...+b_n}.\)(*)

với \(b_1=a_1^2;b_2=a_2^2;b_3=a_3^2;...;b_n=a_n^2\)ta có:

\(\frac{a_1^2}{a^2_1}+\frac{a_2^2}{a^2_2}+\frac{a_3^2}{a_3^2}+...+\frac{a_n^2}{a^2_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}.\)

\(n\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}\Leftrightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\cdot\left(a^2_1+a^2_2+a^2_3+...+a^2_n\right)\)

Để đạt được dấu "=" thì \(a_1=a_2=a_3=...=a_n\).

13 tháng 6 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a_1+a_2+a_3+...+a_n\right)^2=\left(1.a_1+1.a_2+1.a_3+...1.a_n\right)^2\le\left(1^2+1^2+1^2+...+1^2\right)\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)

\(\Rightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a_1}{1}=\frac{a_2}{1}=\frac{a_3}{1}=...=\frac{a_n}{1}\Leftrightarrow a_1=a_2=a_3=...=a_n\)

Do đó, kết hợp với giả thiết của đê bài, ta được điều phải chứng minh.

27 tháng 1 2017

tặng mày free bài 1 c luôn nhé :-bd

18 tháng 6 2017

Trần Thiên Kim: nghe nói bạn học tốt casio, vào đây bơi chút đi. Mấy cái U1, U2, Un này t nhớ là hồi ôn thi t bị ông thầy mất kiên nhẫn giảng như hét vào mặt => ám ảnh ứ dám hỏi nữa. Nấm và tớ vẫn chờ câu trả lời của bạn á ^^!

18 tháng 6 2017

gì vậy chời?!?! Bộ mấy người thông đồng vs nhau gọi t lm mí bài casio ak -_- đùa thôi chứ t chỉ lm đc câu a, b mới nghe lần đầu => chịu :(