\(A=(m;m+2];B=[n;n+3)\)

a, Tìm \(m,n\) để

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

Câu a nếu là giao thì có 2 TH thỏa mãn:

\(\left[{}\begin{matrix}m+2< n\\n+3\le m\end{matrix}\right.\)

NV
5 tháng 8 2020

a/ Đề sai, A hợp B không thể bằng rỗng (vì cả 2 tập hợp đều ko phải tập rỗng nên hợp của chúng ko thể rỗng)

Bạn coi lại đề yêu cầu giao hay hợp

b/ A giao B có 1 phần tử duy nhất khi và chỉ khi \(m+2=n\)

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1

AH
Akai Haruma
Giáo viên
19 tháng 9 2018

Câu 1:

Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng

Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:

\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)

Vậy $n\leq -5$ hoặc $n> 11$

Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$

AH
Akai Haruma
Giáo viên
19 tháng 9 2018

Câu 2:

Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)

Hay \(m\leq 0\) hoặc $m\geq 3$

Câu 3:

Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$

hay \(x\leq 0\) hoặc $x\leq 5$

NV
9 tháng 9 2020

\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge2\\m+4\le5\end{matrix}\right.\\m\ge8\end{matrix}\right.\) \(\Rightarrow m\ge8\)

Vậy \(A\cap B\ne\varnothing\Leftrightarrow m< 8\)

1: A={-3;-2;-1;0;1;2;3}

B={2;-2;4;-4}

A giao B={2;-2}

A hợp B={-3;-2;-1;0;1;2;3;4;-4}

2: x thuộc A giao B

=>\(x=\left\{2;-2\right\}\)

NV
3 tháng 10 2019

a/ \(\left[m;m+2\right]\cap\left[-1;2\right]=\varnothing\)

\(\Leftrightarrow\left[{}\begin{matrix}m+2< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -3\\m>2\end{matrix}\right.\)

b/ \(\left(-\infty;9a\right)\cap\left(\frac{4}{a};+\infty\right)\ne\varnothing\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\frac{4}{a}< 9a\end{matrix}\right.\) \(\Leftrightarrow\frac{\left(2a-3\right)\left(2a+3\right)}{a}>0\Rightarrow\left[{}\begin{matrix}a>\frac{3}{2}\\-\frac{3}{2}< a< 0\end{matrix}\right.\)

c/ \(\left(-\infty;a\right)\cup\left(\frac{4}{a};+\infty\right)=R\)

\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a>\frac{4}{a}\end{matrix}\right.\) \(\Rightarrow\frac{\left(a-2\right)\left(a+2\right)}{a}>0\Rightarrow\left[{}\begin{matrix}a>2\\-2< a< 0\end{matrix}\right.\)

d/ \([m-3;9)\) có 7 phần tử nguyên khi:

\(7\le9-\left(m-3\right)< 8\Rightarrow4< m\le5\)

3 tháng 10 2019

thenk kiu

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

a)


Để \(A\cap B\neq \varnothing \) thì :

\(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\leq 2m+3\\ 3m-2\geq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> \frac{3}{2}\\ m>\frac{-1}{2}\\ -2\leq m\\ m\geq \frac{4}{3}\end{matrix}\right.\Rightarrow m>\frac{3}{2}\)

b)

Để \(A\subset B\) thì \(\left\{\begin{matrix} (3m-2)-(m+1)>0\\ 2m+3-2>0\\ m+1\geq 2\\ 3m-2\leq 2m+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{3}{2}\\ m>\frac{-1}{2}\\ m\geq 1\\ m\leq 5\end{matrix}\right.\)

\(\Rightarrow 5\geq m>\frac{3}{2}\)

Bài 2: 

|x-m|<=1

=>-1<=x-m<=1

=>m-1<=x<=m+1

Để X là tập con của (-5;1] thì m-1>-5 và m+1<=1

=>-4<m<=0

NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)