K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Vì ΔA’B’C’ ∽ ΔABC 

=> ΔA’M’B’ ∽ ΔAMB 

=> \(\frac{{A'M'}}{{AM}} = \frac{{A'B'}}{{AB}}(1)\) (1)

 Vì \(\Delta A'B'C'\) ∽ ΔABC 

=> Vì ΔA′B′N′ ∽ ΔABN 

=> \(\frac{{B'N'}}{{BN}} = \frac{{A'B'}}{{AB}}\) (2)

Từ (1) và (2) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}}\)(3)

 Vì ΔA’B’C’ ∽ ΔABC 

=>  Vì ΔA’C’P’ ∽ ΔACP 

=> \(\frac{{C'P'}}{{CP}} = \frac{{A'C'}}{{AC}}\) (4)

 Vì ΔA′B′C′ ∽ ΔABC 

=> ΔA′M′C′ ∽ ΔAMC 

=> \(\frac{{A'M'}}{{AM}} = \frac{{A'C'}}{{AC}}\) (5)

Từ (4) và (5) => \(\frac{{C'P'}}{{CP}} = \frac{{A'M'}}{{AM}}\) (6)

Từ (3) và (6) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}} = \frac{{C'P'}}{{CP}}\)

12 tháng 6 2017

Đáp án A

a) xét tam giác ABC có:

 P là trung điểm của AB (đường trung tuyến CP)

N là trung điểm của AC (đường trung tuyến BN)

=> PN là đường trung bình của tam giác ABC (đ/n đường trung bình)

=> PN // BC (t/c đường trung bình) 

=> PN //CF

xét tứ giác CPNF có:

NE //PC (gt) 

PN //CF (cmt)

=> CPNF là hình bình hành

b) vì NE //PC (gt) 

        BD //PC (gt)

=> NF // BD

xét tứ giác BDFN có: 

NF // BD (cmt)

BN // DF (gt)

=> BDFN là HBH (dấu hiệu nhận biết)

c) vì tứ giác CPNF là HBH (câu a)

=> NF //CP ; NF = CP (t/c HBH)     (1)

vì tứ giác BDFN là HBH (câu b)

=> NF // BD ; NF = BD (t/c HBH)    (2)

từ (1) và (2) => BD // PC ; BD = PC

=> tứ giác PCDB là HBH (dấu hiệu nhận biết)

Mà M là trung điểm của đường chéo BC

=> M là trung điểm của đường chéo PD

=> P,M,D thẳng hàng

xét tam giác ABC có: 

P là trung điểm của AB (đường trung tuyến CP)

M là trung điểm của BC (đường trung tuyến AM)

=> PM là đường trung bình của tam giác ABC (đ/n đường trung bình)

=> PM //AC (t/c đường trung bình)

=> PD // NC 

=> tứ giác PNCD là hình thang

d) vì AC // PM (cmt) => AN // MD

Vì PM là đường trung bình của tam giác ABC (cmt)

=> PM = 1/2 AC (t/c đường trung bình)

mà AN =1/2 AC (N là trung điểm của AC)

=> PM = AN

mà PM = MD ( M là trung điểm của PD) => AN = MD

vì PM // AC (cmt) => MD // AN 

xét tứ giác ANDM có: 

AN = MD (cmt)

AN //MD (cmt) 

=> tứ giác ANDM là HBH 

=> AM = DN (t/c HBH)

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)