Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
có 9 số 1 có 9 số hạng
\(=\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=1\)
\(a,3x\left(x-\frac{2}{3}\right)=0
\)
\(\)TH1:
3x=0
x=0:3
x=0
TH2
\(x-\frac{2}{3}=0
\)
\(x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy x={0;\(\frac{2}{3}\)}
34 +14 :x=25
\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)
\(x=\frac{1}{4}:-\frac{7}{20}\)
\(x=-\frac{20}{28}\)
\(x=-\frac{5}{7}\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)
\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)
\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)
\(=\frac{101}{2\cdot100}\)
\(=\frac{101}{200}>\frac{1}{2}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)
\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)
\(A=\frac{-101}{200}>\frac{-1}{2}\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\)
\(=\frac{\left(1.2.3...99\right)\left(2.3.4...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=\frac{101}{100}\)
mình lam hơi sai mà cũng khá lac đề, bạn từ bài của mình mà làm bài khác đúng hơn nha hiền
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\left(\frac{1}{2^2}-\frac{4}{2^2}\right)\left(\frac{1}{3^2}-\frac{9}{3^2}\right)...\left(\frac{1}{100^2}-\frac{10000}{100^2}\right)\)
\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(\Rightarrow A=-\frac{3}{2^2}.\frac{8}{3^2}...\frac{9999}{100^2}\)
\(\Rightarrow A=-\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(\Rightarrow A=-\frac{\left(1.2...99\right)\left(3.4...101\right)}{\left(2.3...100\right)\left(2.3...100\right)}\)
\(\Rightarrow A=-\frac{101}{100.2}=\frac{-101}{200}< \frac{-100}{200}=\frac{-1}{2}\)
Vậy \(A< \frac{-1}{2}\)