\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Ta có: \(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)     (   ĐKXĐ: \(x>0,\)\(x\ne0,\)\(x\ne1\))

    \(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)

    \(\Leftrightarrow A=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\left(\frac{2\sqrt{x}}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{2.\left(\sqrt{x}-1\right)}\right)\)

    \(\Leftrightarrow A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để \(A\ge\frac{3}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\ge\frac{3}{2}\)

    \(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{3}{2}\ge0\)

    \(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}+3}{2.\left(\sqrt{x}-1\right)}\ge0\)

    \(\Leftrightarrow\frac{5-\sqrt{x}}{2.\left(\sqrt{x}-1\right)}\ge0\)

+ TH1\(\hept{\begin{cases}5-\sqrt{x}\ge0\\2\sqrt{x}-2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\le5\\\sqrt{x}\ge1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\le25\\x\ge1\end{cases}}\)\(\Rightarrow\)\(1\le x\le25\)\(\left(TM\right)\)

+ TH2\(\hept{\begin{cases}5-\sqrt{x}\le0\\2\sqrt{x}-2\le0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\sqrt{x}\ge5\\\sqrt{x}\le1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge25\\x\le1\end{cases}}\)\(\left(L\right)\)

            \(\Rightarrow\)\(1\le x\le25.\)Kết hợp ĐKXĐ: \(x\ne1\)

                         \(\Rightarrow\)\(1< x\le25\)

Vậy để \(A\ge\frac{3}{2}\)\(\Leftrightarrow\)\(1< x\le25\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ:...
Đọc tiếp

\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)  ĐKXĐ: ...

\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)

\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)

\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)

1
23 tháng 5 2019

hỏi j v

22 tháng 8 2020

P/s : sửa đề 

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(P=\frac{-3\sqrt{x}-3x}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(P=\frac{-3\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)

b) \(P< -\frac{1}{2}\)

\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+\frac{1}{2}< 0\)

\(\Leftrightarrow\frac{-6\sqrt{x}+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\frac{-5\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)

Mà \(2\left(\sqrt{x}+3\right)>0\)

\(\Rightarrow-5\sqrt{x}+3< 0\)

\(\Leftrightarrow-5\sqrt{x}< -3\)

\(\Leftrightarrow\sqrt{x}>\frac{3}{5}\)

\(\Leftrightarrow x>\frac{9}{25}\)

Vấy .................

22 tháng 8 2020

c) \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)

\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)

\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}-2-2+x=0\)

\(\Leftrightarrow-\sqrt{x}-4+x=0\)

\(\Leftrightarrow-\sqrt{x}\left(1-\sqrt{x}\right)=4\)

Còn lại lập bảng tự tìm giá trị của x là ra .( Chú ý : đối chiếu ĐKXĐ )

d) 

\(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)

\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+x\sqrt{x}-xm=x-3\sqrt{x}-m\sqrt{x}\)

\(\Leftrightarrow-3\sqrt{x}+x\sqrt{x}-xm-x+3\sqrt{x}+m\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(x+m\right)-x\left(m+1\right)=0\)

\(\Leftrightarrow\sqrt{x}\left[x+m-m\sqrt{x}-\sqrt{x}\right]=0\)

\(\Leftrightarrow\sqrt{x}\left[m\left(1-\sqrt{x}\right)-\sqrt{x}\left(1-\sqrt{x}\right)\right]=0\)

\(\Leftrightarrow\sqrt{x}=0;m-\sqrt{x}=0;1-\sqrt{x}=0\)

+) \(\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)

+) \(1-\sqrt{x}=0\)

\(\Leftrightarrow x=1\left(TM\right)\)

+) \(m-\sqrt{x}=0\)

\(\Leftrightarrow\orbr{\begin{cases}m-\sqrt{0}=0\\m-\sqrt{1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}}\)

Vậy ..................

22 tháng 6 2016

c) \(C=\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}=\)

\(C=\frac{x\sqrt{x}+2x+x+2\sqrt{x}-x\sqrt{x}+1}{\left(\left(\sqrt{x}\right)^3-1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{x-1}\times\frac{1}{x-1}=\frac{3x+2\sqrt{x}+1}{\left(x-1\right)^2}.\)

22 tháng 6 2016

các bạn giúp mình  với 

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok