\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

a)A=(\(\frac{2}{\sqrt{a}-1}\)+\(\frac{2}{\sqrt{a}+1}\)+4\(\sqrt{a}\)).\(\frac{a-1}{\sqrt{a}}\)=(\(\frac{4\sqrt{a}}{a-1}\)+4\(\sqrt{a}\)).\(\frac{a-1}{\sqrt{a}}\)=\(\frac{4a}{a-1}\)

b)a=(\(\sqrt{\left(4+\sqrt{15}\right).\left(4-\sqrt{15}\right)}\).(\(\sqrt{10}\)-\(\sqrt{6}\))=\(\sqrt{16-15}\).(\(\sqrt{10}\)-\(\sqrt{6}\))=\(\sqrt{10}\)-\(\sqrt{6}\)

Thay vào A rồi tính là xong

2 tháng 9 2020

a) \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)

\(=\left[\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right].\left(\frac{a}{\sqrt{a}}-\frac{1}{\sqrt{a}}\right)\)

\(=\left[\frac{a+2\sqrt{a}+1}{a-1}-\frac{a-2\sqrt{a}+1}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right].\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}.a-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4\sqrt{a}.a}{a-1}.\frac{a-1}{\sqrt{a}}=4a\)

b) Ta có: \(a=\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}.\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{16-15}.\left(\sqrt{10}-\sqrt{6}\right)=\sqrt{10}-\sqrt{6}\)

Thay a vào A ta được: \(A=4.\left(\sqrt{10}-\sqrt{6}\right)=4\sqrt{10}-4\sqrt{6}\)

3 tháng 5 2018

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)

\(A=\)\(\left[\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right]\left[\frac{a+1}{\sqrt{a}}\right]\)

\(A=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\)  \(\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\left(a+1\right)}{a-1}\)

ta có \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(a=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(a=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(a=2\left(16-15\right)\)

\(a=2\)

khi đó \(A=\frac{4.2.\left(2+1\right)}{2-1}=8.3=24\)

vậy.....

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

30 tháng 10 2020

a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)

\(=-2\sqrt{b}\)

c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

17 tháng 3 2020

\(\begin{array}{l} a)A = \left( {\dfrac{{\sqrt a + 1}}{{\sqrt a - 1}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 1}} + 4\sqrt a } \right).\left( {\sqrt a + \dfrac{1}{{\sqrt a }}} \right)\\ = \left[ {\dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - {{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}} + 4\sqrt a } \right].\dfrac{{a + 1}}{{\sqrt a }}\\ = \left[ {\dfrac{{4\sqrt a }}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}} + 4\sqrt a } \right].\dfrac{{a + 1}}{{\sqrt a }}\\ = \dfrac{{4\sqrt a + 4\sqrt a \left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}.\dfrac{{a + 1}}{{\sqrt a }}\\ = \dfrac{{4a\sqrt a }}{{a - 1}}.\dfrac{{a + 1}}{{\sqrt a }} = \dfrac{{4a}}{{a - 1}}\left( {a + 1} \right) = \dfrac{{4{a^2} + 4a}}{{a - 1}} \end{array}\)

$b)$Thay $a=\left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right)$ vào ta được:

$A=\dfrac{4{{\left[ \left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right) \right]}^{2}}+4\left[ \left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right) \right]}{\left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right)-1}=12$

17 tháng 3 2020

$\begin{align}

& a)A=\left( \dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a} \right).\left( \sqrt{a}+\dfrac{1}{\sqrt{a}} \right) \\

& =\left[ \dfrac{{{\left( \sqrt{a}+1 \right)}^{2}}-{{\left( \sqrt{a}-1 \right)}^{2}}}{\left( \sqrt{a}-1 \right)\left( \sqrt{a}+1 \right)}+4\sqrt{a} \right].\dfrac{a+1}{\sqrt{a}} \\

& =\left[ \dfrac{4\sqrt{a}}{\left( \sqrt{a}-1 \right)\left( \sqrt{a}+1 \right)}+4\sqrt{a} \right].\dfrac{a+1}{\sqrt{a}} \\

& =\dfrac{4\sqrt{a}+4\sqrt{a}\left( \sqrt{a}-1 \right)\left( \sqrt{a}+1 \right)}{\left( \sqrt{a}-1 \right)\left( \sqrt{a}+1 \right)}.\dfrac{a+1}{\sqrt{a}} \\

& =\dfrac{4a\sqrt{a}}{a-1}.\dfrac{a+1}{\sqrt{a}}=\dfrac{4a}{a-1}\left( a+1 \right)=\dfrac{4{{a}^{2}}+4a}{a-1} \\

\end{align}$

$b)$Thay $a=\left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right)$ vào ta được:

$A=\dfrac{4{{\left[ \left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right) \right]}^{2}}+4\left[ \left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right) \right]}{\left( 4+\sqrt{15} \right)\left( \sqrt{10}-\sqrt{6} \right)\left( \sqrt{4-\sqrt{15}} \right)-1}=12$

26 tháng 3 2020

Ta có : \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

=> \(Q=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

=> \(Q=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

=> \(Q=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

=> \(Q=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

=> \(Q=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3\sqrt{a}\left(\sqrt{a}-1\right)}\)

=> \(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

24 tháng 7 2019

\(\sqrt{\left(25-\sqrt{15}\right)^2}\) sửa thành \(\sqrt{\left(5-\sqrt{15}\right)^2}\)