\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a)  \(A=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left[\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

b) Ta có : \(\frac{1}{\sqrt{a}}>0\Leftrightarrow-\frac{1}{\sqrt{a}}< 0\Rightarrow\) \(A=1-\frac{1}{\sqrt{a}}< 1\)

13 tháng 7 2016

a) \(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

b) Do \(\sqrt{a}\ge0\) => \(\sqrt{a}-1< \sqrt{a}\)=> \(\frac{\sqrt{a}-1}{\sqrt{a}}< 1\)

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

19 tháng 8 2020

Bài 1 : 

a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}+1}{x}\)

b) \(P>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)

\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)

\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)

\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)

Vậy P > 1/2 với mọi x> 0 ; x khác 1

19 tháng 8 2020

Bài 2 : 

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)

\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)

\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)

b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )

Thay a vào biểu thức K , ta có :

\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)

\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)

26 tháng 3 2020

Ta có : \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

=> \(Q=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

=> \(Q=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{a-4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

=> \(Q=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

=> \(Q=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

=> \(Q=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3\sqrt{a}\left(\sqrt{a}-1\right)}\)

=> \(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

NV
12 tháng 6 2019

a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)

b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)

d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

12 tháng 6 2019

a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)

b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)

c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)

d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

19 tháng 5 2019

a)A=(\(\frac{2}{\sqrt{a}-1}\)+\(\frac{2}{\sqrt{a}+1}\)+4\(\sqrt{a}\)).\(\frac{a-1}{\sqrt{a}}\)=(\(\frac{4\sqrt{a}}{a-1}\)+4\(\sqrt{a}\)).\(\frac{a-1}{\sqrt{a}}\)=\(\frac{4a}{a-1}\)

b)a=(\(\sqrt{\left(4+\sqrt{15}\right).\left(4-\sqrt{15}\right)}\).(\(\sqrt{10}\)-\(\sqrt{6}\))=\(\sqrt{16-15}\).(\(\sqrt{10}\)-\(\sqrt{6}\))=\(\sqrt{10}\)-\(\sqrt{6}\)

Thay vào A rồi tính là xong

2 tháng 9 2020

a) \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)

\(=\left[\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+4\sqrt{a}\right].\left(\frac{a}{\sqrt{a}}-\frac{1}{\sqrt{a}}\right)\)

\(=\left[\frac{a+2\sqrt{a}+1}{a-1}-\frac{a-2\sqrt{a}+1}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right].\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}.a-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4\sqrt{a}.a}{a-1}.\frac{a-1}{\sqrt{a}}=4a\)

b) Ta có: \(a=\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\left(\sqrt{4+\sqrt{15}}\right)\left(\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}.\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{16-15}.\left(\sqrt{10}-\sqrt{6}\right)=\sqrt{10}-\sqrt{6}\)

Thay a vào A ta được: \(A=4.\left(\sqrt{10}-\sqrt{6}\right)=4\sqrt{10}-4\sqrt{6}\)

21 tháng 7 2019

a)

\(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\\ =\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\\ =\frac{\sqrt{a}-1}{\sqrt{a}}\)

b) Ta có: \(A=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

Với mọi a>0 và a≠1 ta có \(\sqrt{a}>0\Leftrightarrow\frac{1}{\sqrt{a}}>0\)

\(\Rightarrow A=1-\frac{1}{\sqrt{a}}< 1\left(đpcm\right)\)

c)

\(A=1-\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)

Vậy.......

22 tháng 7 2019

Cảm ơn bạn nhiều nha yeuyeu

19 tháng 6 2019

câu 3???? sai???

Y
19 tháng 6 2019

1. \(A=\frac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}=\frac{1}{\sqrt{2}}\)

3. \(\frac{\sqrt{1-a}}{\sqrt{1+a}}:\frac{1}{\sqrt{1-a^2}}\) \(=\frac{\sqrt{\left(1-a\right)}\cdot\sqrt{1-a}}{\sqrt{1+a}\cdot\sqrt{1-a}}\cdot\sqrt{1-a^2}\)

\(=\frac{1-a}{\sqrt{1-a^2}}\cdot\sqrt{1-a^2}=1-a\)