Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại ta có :
\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)
Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)
Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)
Thiết lập tương tự và thu lại ta có :
\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a+b\sqrt{3}+c\sqrt{5})^2\leq (a^2+b^2+c^2)(1+3+5)\)
\(\Leftrightarrow (a+b\sqrt{3}+c\sqrt{5})^2\leq 9\Rightarrow a+b\sqrt{3}+c\sqrt{5}\leq 3\)
(đpcm)
Dấu "=" xảy ra khi \(\frac{a}{1}=\frac{b}{\sqrt{3}}=\frac{c}{\sqrt{5}}\) hay \(a=\frac{1}{3}; b=\sqrt{\frac{1}{3}}; c=\sqrt{\frac{5}{9}}\)
Ta có :
<=> u3 - 3u - 2 \(\le\) v3 - 3v + 2 <=> ( u + 1 )2( u - 2 ) \(\le\) ( v - 1 )2( v + 2 )
Đặt x = u + 1 , y = v -1 thì :
BĐT <=> x3 - 3x2 \(\le\) y3 + 3y2 <=> x3 - y3 \(\le\) 3(x2 + y2)
Ta có : x - y = ( u - v ) + 2 \(\le\)2
=> ( x - y ) ( x2 + xy + y2 ) \(\le\)2( x2 + xy + y2) = 2(x2 + y2) + 2xy \(\le\) 2(x2 + y2) + ( x2 + y2 ) = 3(x2 + y2 ) => x3 - y3 \(\le\) 3(x2 +y2 ) ( đpcm)
Dấu bằng xảy ra khi <=> x = y = 0 <=> u = -1 ; v = 1
\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)
\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)
ÁP dụng BĐT cauchy-schwarz:
\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
và \(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)
( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)
Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow ab+bc-ac-b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)
(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .
bằng cách đáng giá tương tự BĐT (1) :
\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)
ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)
Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)
tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng
Do đó ta có đpcm
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lời giải:
Ta thấy \(x^3+y^3+z^3\leq 9\)
\(\Leftrightarrow (x+y+z)^3-3(x+y)(y+z)(z+x)\leq 9\)
\(\Leftrightarrow 27-3[(x+y+z)(xy+yz+xz)-xyz]\leq 9\)
\(\Leftrightarrow 3(xy+yz+xz)-xyz\geq 6(\star)\)
Vì \(x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0\)
\(\Leftrightarrow xyz+4\leq 2(xy+yz+xz)\)
Mặt khác \(xyz\geq 0\rightarrow 2(xy+yz+xz)\geq 4\rightarrow xy+yz+xz\geq 2\)
Do đó \(3(xy+yz+xz)-xyz\geq 2+4+xyz-xyz=6\)
Từ đó BĐT \((\star)\) hay ta có đpcm
Dấu bằng xảy ra khi \((x,y,z)=(2,1,0)\) và các hoán vị.
BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\)
\(\Leftrightarrow ab+2\sqrt{abcd}+cd\le ab+ac+bd+dc\)
\(\Leftrightarrow2\sqrt{abcd}\le ac+bd\)
\(\Leftrightarrow0\le\left(\sqrt{ac}-\sqrt{bd}\right)^2\) ( luôn đúng )
Dấu "=" xảy ra khi \(\sqrt{ac}=\sqrt{bd}\Leftrightarrow ac=bd\Leftrightarrow\frac{a}{b}=\frac{d}{c}\)
ta có: (a-b)2 \(\ge\) 0
=> a2 + b2 - 2ab \(\ge\) 0
=> a2 +b2 - ab \(\ge\) 0
=> a2 +b2 \(\ge\) ab
=> (a+ b)(a2 +b2 - ab) \(\le\) ab(a+b) (vì a\(\le0;\) b\(\le0\) nên a+b \(\le\)0)
=> a3 + b3 \(\le\) ab(a+b)
=>đpcm.
dáng lẽ phải là \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) a2 +b2 - ab ≥ ab