Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt coooossi : c = a+b = a/4 + (3/4a+b) >= a/4 + 2\(\sqrt{\frac{3}{4}.ab}\) >= 4/4 + 2\(\sqrt{\frac{3}{4}.12}\) = 1 + 2\(\sqrt{9}\) = 7
=> ĐPCM
Dấu "=" xảy ra <=> a=4 ; ab=12 <=> a=4 ; b=3
k mk nha
Ta có:\(C=a+b\)
\(C=\dfrac{9}{12}a+b+\dfrac{3}{12}a\)
\(C\ge2\sqrt{\dfrac{9}{12}ab}+\dfrac{3}{12}.4\)(AM-GM)
\(C\ge2\sqrt{\dfrac{9}{12}.12}+1\)
\(C\ge2.3+1=7\left(\text{đ}pcm\right)\)
"="<=>a=4;b=3
Do : a ≥ 4
⇒ b ≥ \(\dfrac{12}{a}\) ≥ 3
⇒ a + b ≥ 4 + 3
⇒ a + b ≥ 7 ( chắc thế :D)
Có : (a-b)^2>=0
<=>a^2+b^2>=2ab (2)
<=>a^2+b^2+2ab>=4ab
<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2 (3)
Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b (4)
Áp dụng bđt (2) ; (3) và (4) thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab
>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)+ \(\frac{1}{\left(a+b\right)^2}\)
= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM
Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
Em nghĩ đề là \(a,b,c>0\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2,w^3\right)\) và \(u^2=tv^2\)
gt \(\Leftrightarrow uw^3=v^2\). Chú ý \(w^3\le uv^2\Leftrightarrow\frac{v^2}{u}\le v^2\Leftrightarrow u\ge1\)
Cần chứng minh: \(15u\ge7+8w^3\Leftrightarrow15u^2\ge7u+8v^2\)
\(\Leftrightarrow8\left(u^2-v^2\right)+7u\left(u-1\right)\ge0\) (hiển nhiên đúng)
cho mình sửa đề tí nhé: \(a^2+b^2+ab\ge12\left(a+b\right)\)
hình như đề bài sai.........nếu a=8 b=8 ( gi trị min đk cho ) thì BDt tên k xây ạ.........vs các số khác cunng zay
bài này đừng ai để bị lừa nhá
Ta có : \(a+b=\frac{1}{4}a+\frac{3}{4}a+b\ge\frac{1}{4}a+2\sqrt{\frac{3}{4}a.b}\)(AM - GM)
\(\ge\frac{1}{4}.4+2\sqrt{\frac{3}{4}.12}=1+6=7\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=4\\\frac{3}{4}a=b\end{cases}\Leftrightarrow\hept{\begin{cases}a=4\\b=3\end{cases}}}\)
\(a\ge4\)
\(ab\ge12\)
\(a^2b\ge48\)
\(b\ge\frac{48}{a^2}\)
\(b\ge\frac{48}{16}=3\)
vay a+b >=7