\(\ge\)3,tìm GTNN CỦA S=a+\(\frac{1}{a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

\(S=a+\frac{1}{a}=\frac{a}{9}+\frac{8a}{9}>2\sqrt{\frac{a}{9}.\frac{1}{a}}+\frac{8a}{9}=2.\frac{1}{3}+\frac{8a}{a}>\frac{2}{3}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}.\)

\(S_{min}=\frac{10}{3}=a^2=9=a=3\)

20 tháng 12 2021

\(S=a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\)

\(=\left(a+\frac{9}{a}\right)-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{a}\)(BĐT Cauchy)

\(=6-\frac{8}{a}\)

Vì \(a\ge3\Rightarrow\frac{8}{a}\le\frac{8}{3}\Rightarrow-\frac{8}{a}\ge-\frac{8}{3}\)

=> \(6-\frac{8}{a}\ge6-\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=\frac{9}{a}\\a=3\end{cases}}\Leftrightarrow a=3\)

Vậy MIN S = 10/3 khi a = 3

23 tháng 2 2020

Áp dụng bđt Cauchy cho 2 số dương:

\(A=x+\frac{1}{x}=\frac{8x}{9}+\frac{x}{9}+\frac{1}{x}\ge\frac{8.3}{9}+2\sqrt{\frac{x}{9}.\frac{1}{x}}=\frac{10}{3}\)

Dấu "=" xảy ra khi x=3

23 tháng 2 2020

\(A=\left(\frac{x}{9}+\frac{1}{x}\right)+\frac{8}{9}x\)

\(\ge2\sqrt{\frac{x}{9}.\frac{1}{x}}+\frac{8}{9}\times3\) \(=2\times\frac{1}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{9}=\frac{1}{x}\Leftrightarrow x=3\left(tmđk\right)\)

27 tháng 10 2019

Cách 1:\(S=a+\frac{1}{a}=a+\frac{16}{a}-\frac{15}{a}\ge2\sqrt{a.\frac{16}{a}}-\frac{15}{4}=\frac{17}{4}\)

Đẳng thức xảy ra khi x = 4

Vậy...

Cách 2: \(S=a+\frac{1}{a}=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\)

\(\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi x = 4

Vậy...

Cách 3: Xét hàm \(S=f\left(a\right)=a+\frac{1}{a}\)\(4\le a_1< a_2\)

Khi đó \(f\left(a_2\right)-f\left(a_1\right)=\left(a_2-a_1\right)-\frac{a_2-a_1}{a_1a_2}\)

\(=\left(a_2-a_1\right)\left(\frac{a_1a_2-1}{a_1a_2}\right)>0\)

Như vậy khi a càng nhỏ thì S càng nhỏ. Do đó \(S=f\left(a\right)\ge f\left(4\right)=\frac{17}{4}\)

Đẳng thức xảy ra khi a = 4

P/s: Em ko chắc ở cách thứ 3 cho lắm!

11 tháng 11 2018

\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)

\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}+2}\)

11 tháng 11 2018

b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)

Để P = 1/2

thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{a}-2=2\)

\(\Leftrightarrow\sqrt{a}=4\)

\(\Leftrightarrow a=16\left(tm\right)\)

22 tháng 12 2021

Theo bất đẳng thức Cauuchy ta có :

\(\frac{a}{b}< \left(\frac{a+b}{2}\right)< \frac{1}{4}=-ab>-\frac{1}{4}.\)

Do đó ta được biểu thức :

\(A=16ab+\frac{1}{ab}-15ab>2\sqrt{16ab.\frac{1}{ab}}-15ab>8-15.\frac{1}{4}=\frac{17}{4}\)

Dấu đẳng thức xảy ra chỉ khi \(a=b=\frac{1}{2}\)

Vậy \(A_{min}=\frac{17}{4}\)

22 tháng 12 2021

ta có \(a+b\ge2\sqrt{ab}=>2\sqrt{ab}\le1=>ab\le\frac{1}{4}\)

ta có \(A=16ab+\frac{1}{ab}-15ab\ge2\sqrt{16ab.\frac{1}{ab}}-\frac{15}{4}=\frac{17}{4}\)

Dầu "=" xảy ả khi \(\hept{\begin{cases}a+b=1\\a+b=2\sqrt{ab}\\ab=\frac{1}{4}\end{cases}}=>a=b=\frac{1}{2}\)

NV
24 tháng 4 2020

\(a\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a\ge1\\c\le1\end{matrix}\right.\)

a/ \(ac+1\le a+c\Leftrightarrow ac-a+1-c\le0\)

\(\Leftrightarrow a\left(c-1\right)-\left(c-1\right)\le0\)

\(\Leftrightarrow\left(a-1\right)\left(c-1\right)\le0\) luôn đúng với \(\left\{{}\begin{matrix}a\ge1\\c\le1\end{matrix}\right.\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=1\\c=1\end{matrix}\right.\)

b/ \(P=\frac{1}{ac+1}+\frac{1}{b+c}\ge\frac{1}{a+c}+\frac{1}{b+c}\ge\frac{4}{a+b+c+c}=\frac{4}{c+3}\ge\frac{4}{1+3}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

2 tháng 12 2019

dăt tinh roi tinh

173,44:32    112,56:28   155,9:15   

b 372,96:3   857,5:35      431,25:125

22 tháng 10 2015

1,a\(\frac{x}{\sqrt{\left(x-1\right).1}}\ge\frac{x}{\frac{x}{2}}=2\left(dpcm\right)\)

b,tương tự như câu a( đều xài co-sy cả mà)

\(\frac{a^2}{b-1}\ge\frac{a^2}{\frac{b^2}{4}}=\frac{4a^2}{b^2}\)tương tư như vậy, biểu thức sẽ :

\(\ge4\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}\right)\ge4.2=8\)

bằng khi a=b