\(a\ge1,b\ge1\)

Cm: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Chứng minh bằng biến đổi tương đương : 

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\left(\frac{a-b}{1+ab}\right)\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{1+ab}.\frac{\left(a-b\right)\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(a^2+1\right)\left(b^2+1\right)}\ge0\)

Vì \(a\ge1,b\ge1\) nên \(ab-1\ge0\) . Mặt khác vì \(\left(a-b\right)^2\ge0\) nên ta có điều phải chứng minh.

22 tháng 12 2017

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

5 tháng 9 2020

Cách khác:

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)\left[b\left(1+a^2\right)-a\left(1+b^2\right)\right]}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng).

NV
5 tháng 9 2020

\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow2+2ab+a^2+b^2+ab\left(a^2+b^2\right)\ge2+2a^2+2b^2+2a^2b^2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng với mọi \(a\ge1;b\ge1\))

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

25 tháng 8 2018

khó quá bạn ơi mình cần thêm thời gian để làm 

25 tháng 8 2018

nhanh lên nhé

19 tháng 5 2019

Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)

\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)

\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)

4 tháng 12 2016

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{ab+1}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(ab+1\right)}+\frac{ab-b^2}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(ab+1\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)}{ab+1}\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{b+ba^2-a-ab^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{ab\left(a-b\right)-\left(a-b\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

Vì \(ab\ge1\) nên BĐT trên luôn đúng.

Vậy bđt ban đầu dc chứng minh . 

5 tháng 12 2016

thanks

31 tháng 5 2015

\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}>=\frac{2}{\left(1+ab\right)}\)

\(\Leftrightarrow\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}>=0\)

\(\Leftrightarrow\left[\frac{1}{\left(1+a^2\right)}-\frac{1}{\left(1+ab\right)}\right]+\left[\frac{1}{\left(1+b^2\right)}-\frac{1}{\left(1+ab\right)}\right]>=0\)

\(\Leftrightarrow\left[\frac{a\left(b-c\right)}{\left(1+a^2\right)\left(1+ab\right)}\right]+\left[\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\right]>=0\)

\(\frac{\left[a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left(a+ab^2-b+ba^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left[\left(a-b\right)+ab\left(b-a\right)\right]\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)^2\left(ab-1\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\left(1\right)\)

Mẫu số luôn lớn hơn 1 

\(\left(b-a\right)^2>=0\)  voi moi a,b

Vì a,b >=1 nên ( ab-1) > = 0

​Nên (1)  dụng

 

31 tháng 5 2015

Tu "dung"doi thanh dung

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###