\(a\ge0\). CMR:

\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(VT=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+a+1\)

\(=a-\sqrt{a}-a-\sqrt{a}+a+1\)

\(=a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2=VP\)

30 tháng 10 2020

a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)

\(=-2\sqrt{b}\)

c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

6 tháng 10 2020

a) Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)\)

\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\cdot\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\frac{1}{1+\sqrt{a}}\)

\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{1+\sqrt{a}}\)

\(=1+\sqrt{a}\) Bằng 1 kiểu gì đây._.?

6 tháng 10 2020

a) Xin lỗi sửa lại phần a:

Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=1\)

b) Ta có: \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\sqrt{6}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)=3-2=1\)

\(VT=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+a+1\)

\(=a-\sqrt{a}-a-\sqrt{a}+a+1\)

\(=a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2=VP\)

2 tháng 8 2016

Đề của bạn bị sai, mình sửa lại đề ở dưới nhé!

  \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}+a+1\) 

\(=\frac{\left(a^2-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}+a+1\)

\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)+\left(a+1\right)\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a+1\right)^2-\left(\sqrt{a}\right)^2}\)

\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{\left(a-1\right)^2-a}\)

\(=\frac{a^3-a^2\sqrt{x}+a^2-a\sqrt{a}+a-\sqrt{a}-a^3-a^2\sqrt{a}-a^2-a\sqrt{a}-a-\sqrt{a}+\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{a^2+2a+1-a}\)

\(=\frac{-2a^2\sqrt{a}-2a\sqrt{a}-2\sqrt{a}+\left(a+1\right)\left(a^2+2a+1-a\right)}{a^2+a+1}\)

\(=\frac{-2\sqrt{a}\left(a^2+a+1\right)+\left(a+1\right)\left(a^2+a+1\right)}{a^2+a+1}\)

\(=\frac{\left(a^2+a+1\right)\left[-2\sqrt{x}+\left(x+1\right)\right]}{a^2+a+1}\)

\(=x-1-2\sqrt{x}\)

\(=\left(\sqrt{x}-1\right)^2\)

(Chúc you học giỏi nhoa!)

2 tháng 8 2016

Ui ui mình ghi lộn, xin lỗi nhoa, vì x dễ làm hơn nên mình ghi lộn a thành x, mong bạn thông cảm hihi!

Cho e xin cảm ơn trc ak