\(a\ge b\ge c>0\). Tìm GTNN của biểu thức: \(L=\frac{a}{a+b}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Ta có:

\(L=\frac{\sum\left(abc+a^2b+ca^2+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3abc+2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}{2abc+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}\).

Ta chứng minh \(L\ge\frac{3}{2}\). (*)

Thật vậy:

\(\left(\cdot\right)\Leftrightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\ge0\left(Q.E.D\right)\).

(*) được chứng minh.

Vậy Min P = 0,125 khi a = b = c.

NV
10 tháng 9 2020

\(L=\frac{a+b-b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1-\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(L=b\left(\frac{1}{b+c}-\frac{1}{a+b}\right)+\frac{c}{c+a}-\frac{1}{2}+\frac{3}{2}\)

\(L=\frac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}+\frac{3}{2}=\left(a-c\right)\left(\frac{b}{\left(a+b\right)\left(b+c\right)}-\frac{1}{2\left(a+c\right)}\right)+\frac{3}{2}\)

\(L=\left(a-c\right)\left(\frac{ab+bc-ac-b^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)+\frac{3}{2}=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi ít nhất 2 trong 3 số bằng nhau

4 tháng 10 2020

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\)

Mặt khác : \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)\(\Rightarrow\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\ge\frac{3}{2}\)

5 tháng 10 2020

Dự đoán \(MinL=\frac{3}{2}\)khi a = b = c

Ta cần chứng minh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{\left(a-b\right)+\left(c-a\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{a-b}{2\left(b+c\right)}-\frac{c-a}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2}\left(\frac{1}{a+b}-\frac{1}{b+c}\right)-\frac{c-a}{2}\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2}.\frac{c-a}{\left(a+b\right)\left(b+c\right)}-\frac{c-a}{2}.\frac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{\left(a-b\right)\left(c-a\right)\left(a+b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đúng do \(a\ge b\ge c>0\))

Đẳng thức xảy ra khi a = b = c

3 tháng 8 2017

Vì \(a,b,c>0\)\(\Rightarrow\frac{a}{b};\frac{b}{c};\frac{c}{a}>0\)nên áp dụng bđt Cauchy cho 3 số dương ta có 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\left(đpcm\right)\)

Vậy với \(a,b,c>0\)thì \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

22 tháng 1 2018

dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)

áp dụng cô si ta có

\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)

ÁP DỤNG co si tiếp tao có  \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)

theo cô si ta có  \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)

\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)

từ 1 và 2 ta được

\(6\ge2+4\)

bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD

22 tháng 1 2018

bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành   \(\frac{9}{a+b+c}\ge2+4\) nhé  

10 tháng 7 2019

Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:

\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)

Giải phần dấu "=" ra ta được a = b =c

Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)

Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)

Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)

\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)

Bài toán đúng theo kết quả câu 1.

13 tháng 9 2017

a)Từ \(a+b+c\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*

Khi \(a=b=c\)

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự rồi cộng theo vế :

\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Khi \(a=b=c=1\)

24 tháng 12 2019

a) \(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )

=>đpcm

25 tháng 12 2019

Cô si

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)

Cộng lại ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)

26 tháng 2 2020

Bài 1

Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)

\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)

Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)

Do đó ta cần chứng minh :

\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)

\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)

\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)

Dấu " = " xảy ra khi a=b=c

26 tháng 2 2020

Bài 2 :

Vì x , y , z > 0 ta có :

Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\)\(\frac{y+z}{4}\)

ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .

Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)

Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)