Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\)
Mặt khác : \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)\(\Rightarrow\frac{\left(a+b+c\right)^2}{2ab+2bc+2ac}\ge\frac{3}{2}\)
Dự đoán \(MinL=\frac{3}{2}\)khi a = b = c
Ta cần chứng minh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{\left(a-b\right)+\left(c-a\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}-\frac{a-b}{2\left(b+c\right)}-\frac{c-a}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{a-b}{2}\left(\frac{1}{a+b}-\frac{1}{b+c}\right)-\frac{c-a}{2}\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)\(\Leftrightarrow\frac{a-b}{2}.\frac{c-a}{\left(a+b\right)\left(b+c\right)}-\frac{c-a}{2}.\frac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c+a\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}-\frac{\left(a-b\right)\left(c-a\right)\left(a+b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)\(\Leftrightarrow\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đúng do \(a\ge b\ge c>0\))
Đẳng thức xảy ra khi a = b = c
Vì \(a,b,c>0\)\(\Rightarrow\frac{a}{b};\frac{b}{c};\frac{c}{a}>0\)nên áp dụng bđt Cauchy cho 3 số dương ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\left(đpcm\right)\)
Vậy với \(a,b,c>0\)thì \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
dự đoán của chúa Pain A=B=C=1 thế thôi éo nói nhiều làm j :)
áp dụng cô si ta có
\(\frac{3}{a+b+c}+\frac{\left(a+b+C\right)}{3}\ge2\sqrt{\frac{3.\left(a+b+c\right)}{\left(a+b+c\right).3}}=2.\)
ÁP DỤNG co si tiếp tao có \(\frac{2}{abc}+2abc\ge2\sqrt{\frac{4abc}{abc}=}=4\)
theo cô si ta có \(a+B+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\frac{9}{a+b+c}\ge2\sqrt{3}+4\)
\(3.\left\{\frac{3}{\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{3}\right\}\ge3.\left\{2\sqrt{\frac{3\left(a+b+c\right)}{3\left(a+b+c\right)}}\right\}=6\)
từ 1 và 2 ta được
\(6\ge2+4\)
bây giờ mày thử ấn máy tính đi xem 2+4= bao nhiêu rồi tích cho tao nhé xDDDDD
bạn ơi cái chỗ \(\frac{9}{a+b+c}\ge2\sqrt{3}+4.\) là t viết nhầm nhé sủa lại thành \(\frac{9}{a+b+c}\ge2+4\) nhé
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
a)Từ \(a+b+c\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*
Khi \(a=b=c\)
b)Áp dụng BĐT AM-GM ta có:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự rồi cộng theo vế :
\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Khi \(a=b=c=1\)
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
Bài 1
Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)
\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)
Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)
Do đó ta cần chứng minh :
\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)
\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)
\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)
Dấu " = " xảy ra khi a=b=c
Bài 2 :
Vì x , y , z > 0 ta có :
Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\) và \(\frac{y+z}{4}\)
ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .
Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)
Ta có:
\(L=\frac{\sum\left(abc+a^2b+ca^2+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3abc+2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}{2abc+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}\).
Ta chứng minh \(L\ge\frac{3}{2}\). (*)
Thật vậy:
\(\left(\cdot\right)\Leftrightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\ge0\left(Q.E.D\right)\).
(*) được chứng minh.
Vậy Min P = 0,125 khi a = b = c.
\(L=\frac{a+b-b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1-\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(L=b\left(\frac{1}{b+c}-\frac{1}{a+b}\right)+\frac{c}{c+a}-\frac{1}{2}+\frac{3}{2}\)
\(L=\frac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}+\frac{3}{2}=\left(a-c\right)\left(\frac{b}{\left(a+b\right)\left(b+c\right)}-\frac{1}{2\left(a+c\right)}\right)+\frac{3}{2}\)
\(L=\left(a-c\right)\left(\frac{ab+bc-ac-b^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)+\frac{3}{2}=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi ít nhất 2 trong 3 số bằng nhau