\(\frac{x^3+26x-19}{x^2+2x-3}-\frac{2x}{x-1}+\frac{x-3}{x+3}\)

a. Rút gọn A

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

ĐK \(\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

a, \(P=\frac{x^2+26x-19}{\left(x+3\right)\left(x-1\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}\)\(=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}\)

\(=\frac{x^2+26x-19-2x^2-6x+x^2-4x+3}{\left(x+3\right)\left(x-1\right)}\)\(=\frac{16\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=\frac{16}{x+3}\)

b. Với \(x=3\Rightarrow P=\frac{16}{3+3}=\frac{8}{3}\)

Với \(x=-1\Rightarrow P=\frac{16}{-1+3}=8\)

c. \(P=4\Rightarrow\frac{16}{x+3}=4\Rightarrow x+3=4\Rightarrow x=1\)

d. \(P\in Z\Rightarrow x+3\inƯ\left(16\right)\)

\(\Rightarrow x+3\in\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow x\in\left\{-19;-11;-7;-5;-4;-2;-1;1;5;13\right\}\)

14 tháng 7 2017

\(P=\frac{x^2+26x-19}{\left(x-1\right)\left(x+3\right)}-\frac{2x}{x-1}+\frac{x-3}{x+3}=\)

\(P=\frac{x^2+26x-19-2x\left(x+3\right)+\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{x^2+26x-19-2x^2-6x+x^2-4x+4}{\left(x-1\right)\left(x+3\right)}=\)

\(P=\frac{16x-15}{\left(x-1\right)\left(x+3\right)}\)

8 tháng 12 2016

a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)

b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)

Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)

\(\text{x}=1\) (loại)

Vậy giá trị nguyên tập hợp x là:

x=-5;3;9

12 tháng 12 2016

\(A=\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right):\left(-1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x-2}{2\left(x-1\right)}+\frac{3}{2\left(x-1\right)}+\frac{-\left(x+3\right)}{2\left(x+1\right)}\right):\left(-\frac{1}{1}+\frac{-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{-1\left(x+1\right)-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{x^2-x^2+x+3x-2x-6+3+3}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1-x+3}{x+1}\right)\)

=\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}:\frac{2}{x+1}\)

\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}.\frac{x+1}{2}\)

\(=\frac{x}{2\left(x-1\right)}\)

b,Thayx=2005

\(\Rightarrow A=\frac{2005}{4008}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

23 tháng 7 2019

a) \(B=\frac{1}{x+3}+\frac{x}{x-1}-\frac{4x}{x^2+2x-3}=\frac{x-1}{x^2+2x-3}+\frac{x^2+3x}{x^2+2x-3}-\frac{4x}{x^2+2x-3}\)

\(\Leftrightarrow B=\frac{x-1+x^2+3x-4x}{x^2+2x-3}=\frac{x^2-1}{x^2+2x+1-4}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2-2^2}\)

\(\Leftrightarrow B=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{x+1}{x+3}\)

b) \(\frac{A-1}{B}=\frac{\frac{x-1}{x+3}-1}{\frac{x+1}{x+3}}=\frac{\frac{-4}{x+3}}{\frac{x+1}{x+3}}=\frac{-4}{x+1}\le\frac{1}{2}\Leftrightarrow-8\le x+1\Leftrightarrow x\ge-9\)

24 tháng 6 2017

a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:

\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)

\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)

b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)

=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)

c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)

d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6