Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{x^2+x+1}=\frac{-2}{3}\)
\(\Leftrightarrow\frac{x^2+x+1}{x}=-1,5\)
\(\Leftrightarrow x+1+\frac{1}{x}=-1,5\)
\(\Leftrightarrow x+\frac{1}{x}=-2,5\)
Ta lại có: \(A=\frac{x^2}{x^4+x^2+1}\)
\(\Leftrightarrow\frac{1}{A}=\frac{x^4+x^2+1}{x^2}=x^2+1+\frac{1}{x^2}\)
\(=\left(x+\frac{1}{x}\right)^2-1=\left(-2,5\right)^2-1=5,25\)
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!
điều kiện xác định của phân thức là x khác 0 và x khác -3
nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6
a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)
Phương trình nhận \(x=2\)làm nghiệm nên :
\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)
\(\Leftrightarrow15m+90-20=80\)
\(\Leftrightarrow15m=80+20-90\)
\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)
....
b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)
Phương trình nhận \(x=1\)làm nghiệm nên :
\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)
\(\Leftrightarrow30+15m-32=43\)
\(\Leftrightarrow15m=43+32-30\)
\(\Leftrightarrow15m=45\Leftrightarrow m=3\)
....
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80
Phương trình có nghiệm x = 2:
5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80
<=> 5(m + 6).3 - 4.5 = 80
<=> 15(m + 6) - 4.5 = 80
<=> 15(m + 6) - 20 = 80
<=> 15(m + 6) = 80 + 20
<=> 15(m + 6) = 100
<=> m + 6 = 100 : 15
<=> m + 6 = 20/3
<=> m = 20/3 - 6
<=> m = 2/3
b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43
Phương trình có nghiệm x = 1:
3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43
<=> 3(2 + m).5 - 2.16 = 43
<=> 15(2 + m) - 32 = 43
<=> 15(2 + m) = 43 + 32
<=> 15(2 + m) = 75
<=> 2 + m = 75 : 15
<=> 2 + m = 5
<=> m = 5 - 2
<=> m = 3
ai nhanh cho right lun
\(A=\frac{x^2}{x^2-1}-\frac{2x^2}{x^4-1}-\frac{1}{x^2+1}\)ĐK \(x\ne1\)
\(=\frac{x^2}{x^2-1}-\frac{2x^2}{\left(x^2-1\right)\left(x^2+1\right)}-\frac{1}{x^2+1}\)
\(=\frac{x^2\left(x^2+1\right)-2x^2-1\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4+x^2-2x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-2x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2\left(x^2-1\right)-\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
Thay \(x=-\frac{2}{3}\)ta có
\(\frac{\left(\frac{-2}{3}\right)^2-1}{\left(-\frac{2}{3}\right)^2+1}=\frac{\frac{4}{9}-1}{\frac{4}{9}+1}=-\frac{5}{9}:\frac{13}{9}=-\frac{5}{13}\)