Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
a) Ta co \(A=\frac{4-x}{x-2}=\frac{-\left(x-4\right)}{x-2}=\frac{-\left(x-2\right)+2}{x-2}\)\(=\frac{-\left(x-2\right)}{x-2}+\frac{2}{x-2}\)\(=-1+\frac{2}{x-2}\)
De A nguyen <=> \(-1+\frac{2}{x-2}\)nguyen <=> \(2⋮x-2\)
=> \(x-2\in U\left\{2\right\}=\left\{-2:-1;1;2\right\}\)
\(x-2=-2\)=>\(x=0\)(thoa)
\(x-2=-1\)=>\(x=1\)(thoa)
\(x-2=1\)=>\(x=3\)(thoa)
\(x-2=2\)=>\(x=4\)(thoa)
xin loi mk lam duoc den day thoi
a) Ta có : \(A=\frac{4-x}{x-2}=\frac{-x+4}{x-2}=\frac{-\left(x-4\right)}{x-2}\)
\(=\frac{-\left(x-2-2\right)}{x-2}=-1+\frac{2}{x-2}\)
Do đó: A nguyên <=> \(\frac{2}{x-2}\) nguyên <=> 2 chia hết cho x -2 ( vì x - 2 thuộc Z )
<=> x -2 thuộc Ư(2) = { -1;1;-2;2 <=> x thuộc { 1; 3; 0; 4 }
Vậy x = ....................
b) Vì \(A=-1+\frac{2}{x-2}\) nên A đạt giá trị nhỏ nhất <=> 2/x-2 có giá trị nhỏ nhất
<=> x - 2 bé hơn 0 và có giá trị lớn nhất <=> x - 2 = -1 <=> x = 1
Khi đó : A = \(-1+\frac{2}{1-2}=-1-2=-3\)
Vậy .................................
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
Chỉ tìm được một trong hai thôi nhé!:)Và nhớ sửa đề chữ a thành x nhá,bn đánh nhầm thì phải!\(M=\frac{3x-7}{x+1}=\frac{3\left(x+1\right)}{x+1}-\frac{10}{x+1}=3-\frac{10}{x+1}\)
Ta có: với mọi x thuộc N thì \(x+1\ge0+1=1\) (do x nhỏ nhất là 0)
Suy ra \(\frac{10}{x-1}\le10\Rightarrow-\frac{10}{x-1}\ge-10\)
Suy ra \(M=3+\left(-\frac{10}{x-1}\right)\ge3-10=-7\forall x\inℕ\)
Vậy giá trị nhỏ nhất của M là -7 tại x =0